K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

- 2x2 + x - 1 = - 2x2 + x - 1/8 - 7/8

= - ( 2x2 - x + 1/8 ) - 7/8

= - 2( x2 - 1/2x + 1/16 ) - 7/8

= - 2( x - 1/4 )2 - 7/8

Vì ( x - 1/4 )2 \(\ge\)0\(\forall\)x =>  - 2( x - 1/4 )2 - 7/8\(\le\)- 7/8

Dấu "=" xảy ra <=> - 2( x - 1/4 )2 = 0 <=> x - 1/4 = 0 <=> x = 1/4

Vậy GTLN của bt trên = - 7/8 <=> x = 1/4

14 tháng 11 2020

-2x2 + x - 1

= -2( x2 - 1/2x + 1/16 ) - 7/8

= -2( x - 1/4 )2 - 7/8 ≤ -7/8 ∀ x

Dấu "=" xảy ra khi x = 1/4

=> GTLN của biểu thức = -7/8 <=> x = 1/4

1 tháng 9 2019

\(F=-x^4+x^2-4y^2+2x-4y+2000.\)

\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)

\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)

\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)

20 tháng 8 2018

Ta có :

\(K=x^4-2x^2\)

\(=x^4-2x^2+1-1\)

\(=\left(x^2-1\right)^2-1\)

Vì \(\left(x^2-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2-1\right)^2-1\ge-1\forall x\)

Dấu " = " xảy ra khi và chỉ khi

\(\left(x^2-1\right)^2=0\)

\(\Leftrightarrow x^2-1=0\)

\(x=\pm1\)

Vậy \(K_{min}=-1\) tại \(x=\pm1\)

20 tháng 8 2018

\(K=x^4-2x^2\)

\(K=\left(x^2\right)^2-2x^2+1-1\)

\(K=\left(x^2-1\right)^2-1\ge-1\)

Vậy Min K = -1 <=> x = 1 hoặc -1

31 tháng 8 2018

\(C=x^2-2x+2018=\left(x^2-2x+1\right)+2017=\left(x-1\right)^2+2017\ge2017.\)

Dấu "='' xảy ra khi x=1 

31 tháng 8 2018

\(C=x^2-2x+2018=x^2-2x+1+2017=\left(x-1\right)^2+2017\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+2017\ge2017\forall x\)

Vậy Min C = 2017

Dấu = xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

=.= hok tốt!!

12 tháng 9 2019

a. 

\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)

Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1

b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)

Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2

28 tháng 10 2019

Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24

A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4

A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2  + 4 \(\ge\)\(\forall\)x;y;z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)

Vậy MinA = 4 <=> x=  1 ; y = -3 và z = -1/3

28 tháng 10 2019

\(x^2+2y^2+9z^2-2x+12y+6z+24\)

\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)

Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)

Vậy................................

4 tháng 11 2018

a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy MinA = -18 khi x=2

b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2

Vậy MaxB = 1/4 khi x=1/2

5 tháng 11 2018

a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)

\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)

Vì \(2\left(x-2\right)^2\ge0\forall x\)

Nên \(2\left(x-2\right)^2\ge-18\)

Hay \(A\ge-18\)

Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)

\(x-2=0\)

\(x=2\)

b) \(B=x-x^2\)

\(=-x^2-x\)

\(=-\left(x^2-x\right)\)

\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)

\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x \)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

21 tháng 8 2018

           N = x2 + x + 1

              = x2 + 2.x.\(\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

             =  \(\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x 

          \(\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

hay \(N\ge\frac{-1}{4}\)

Dấu " = " xảy ra <=> \(x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của \(N=\frac{-1}{4}\Leftrightarrow x=\frac{-1}{2}\)

21 tháng 8 2018

Bài của  NGUYỄN VĂN HUY  sai nhé

\(N=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra   <=>     \(x=-\frac{1}{2}\)

Vậy MIN \(N=\frac{3}{4}\)  khi   \(x=-\frac{1}{2}\)

27 tháng 4 2019

\(\Rightarrow\left(A-1\right)x^2+\left(A+2\right)x+A-2=0\)

Để pt có ng0 thì \(\Delta\ge0\)

\(\Rightarrow\left(A+2\right)^2-4\left(A-1\right)\left(A-2\right)\ge0\)

\(\Leftrightarrow-3A^2+7A-4\ge0\)

\(\Rightarrow1\le A\le\frac{4}{3}\)

\(A_{min}=1\Leftrightarrow x=\frac{1}{3}\)

\(A_{max}=\frac{4}{3}\Rightarrow4\left(x^2+x+1\right)=3\left(x^2-2x+2\right)\)

Đến đây tự tìm.

21 tháng 4 2021

/ là sao z bn