Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
cộng vế với vế ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2013}=\frac{2012}{2013}< \frac{2014}{2013}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
............
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1\)
Mà \(\frac{2014}{2013}>1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{2014}{2013}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
p<1+1/1.2+1/2.3+1/3.4.......+1/2013.2014
p<1+1-1/2+1/2-1/3+.....+1/2013-1/2014
p<1+1-1/2014
p<4027/2014(nhớ chuyển ra hỗn số)<q