Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
Ta có:4=1+1+1+1=\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)
\(\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)
Xét \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)
\(=\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)
xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)
\(\Rightarrow4< A\)
để mk chuyển dạng luôn nghe cho các bạn dễ làm
\(\frac{2008}{2004}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)
dạng tương tự là
\(\frac{28}{29}+\frac{29}{30}+\frac{30}{31}+\frac{31}{28}\)
\(mà\)\(vẫn\)\(so\)\(sánh\)\(với\)\(4\)
2008/2009 + 2009/2010 + 2010/2011 + 2011/2008
= 1 - 1/2009 + 1 - 1/2010 + 1 - 1/2011 + 1 + 3/2008
= (1 + 1 + 1 + 1) - (1/2009 + 1/2010 + 1/2011) + 3/2008
= 4 - (1/2009 + 1/2010 + 1/2011) + 3/2008
Vì 1/2009 < 1/2008
1/2010 < 1/2008
1/2011 < 1/2008
=> 1/2009 + 1/2010 + 1/2011 < 3 × 1/2008 = 3/2008
=> -(1/2009 + 1/2010 + 1/2011) + 3/2008 > 0
=> 4 - (1/2009 + 1/2010 + 1/2011) + 3/2008) > 4
=> 2008/2009 + 2009/2010 + 2010/2011 + 2011/2008 > 4
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{20101}{2009+2010+2011}\)
Ta thấy \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\);
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Suy ra : A > B
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
Ta có : \(A=\frac{2009.2009+2008}{2009.2009+2009}\)
\(=1-\frac{1}{2009.2009+2009}\)
\(B=\frac{2009.2009+2009}{2009.2009+2010}\)
\(=1-\frac{1}{2009.2009.2010}\)
Mà \(-\frac{1}{2009.2009+2009}< -\frac{1}{2009.2009.2010}\)
=> \(\frac{2009.2009+2008}{2009.2009+2009}< \frac{2009.2009+2009}{2009.2009.2010}\) => A < B
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}=1+1+1+1+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)\left(vì:2008>2009>2010>2011\right)\Rightarrow\frac{1}{2008}>\frac{1}{2009}>\frac{1}{2010}>\frac{1}{2011}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2008}-\frac{1}{2009}>0\\\frac{1}{2008}-\frac{1}{2010}>0\\\frac{1}{2008}-\frac{1}{2011}>0\end{matrix}\right.\Rightarrow4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4+0+0+0=4\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}>4\)
Cảm ơn bạn nhé.