Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) A = 20 + 21 + 22 + 23 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
=> 2A - A = ( 2 + 22 + 23 + ... + 22011 ) - ( 20 + 21 + 22 + ... + 22010 )
=> A = 22011 - 20
=> A = 22011 - 1
Vì 22011 - 1 > 22010 - 1 nên A > B
a, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Leftrightarrow2A=2^1+2^2+2^3+...+2^{2011}\)
\(\Leftrightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1\)
\(\Rightarrow A=B\)
b, \(B=2010^2=2010\times2010\)
Ta có : \(2009\times2011=2009\times\left(2010+1\right)=2009\times2010+2009\)
\(2010\times2010=2010\times\left(2009+1\right)\)\(=2010\times2009+2010\)
Vì \(2009< 2010\)
\(\Rightarrow A< B\)
c , Ta có : \(A=333^{444}=\left(333^4\right)^{111}\)
\(B=444^{333}=\left(444^3\right)^{111}\)
Cả A và B đều có cùng số mũ 111 nên ta so sánh \(333^4\)và \(444^3\)
Ta thấy : \(333^4=\left(3\times111\right)^4=3^4\times111^4=81\times111^4\)
\(444^3=\left(4\times111\right)^3=4^3\times111^3=64\times111^3\)
Vì \(81\times111^4>64\times111^3\)
\(\Rightarrow A>B\)
d , Ta có : \(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
\(\Rightarrow B>A\)
e , Ta có : \(A=3^{450}=\left(3^9\right)^{50}=19683^{50}\)
\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)
\(\Rightarrow A>B\)
_Chúc bạn học tốt_
a) Ta có :
A = 20 + 2 + 22 + ... + 22010
2A = 2 + 22 + 23 + ... + 22011
2A - A = ( 2 + 22 + 23 + ... + 22011 ) - ( 20 + 2 + 22 + ... + 22010 )
A = 22011 - 20 = 22011 - 1 = B
b) A = 2009 . 2011 = ( 2010 - 1 ) . 2011 = 2010 . 2011 - 2011
B = 20102 = 2010 . 2010 = ( 2011 - 1 ) . 2010 = 2011 . 2010 - 2010
Ta thấy 2010 . 2011 - 2011 < 2011 . 2010 - 2010 nên A < B
c) Ta có : 333444 = ( 3334 )111 ; 444333 = ( 4443 )111
Lại có : 3334 = ( 3 . 111 )4 = 34 . 1114 = 81 . 1114 ; 4443 = ( 4 . 111 )3 = 43 . 1113 = 64 . 1113
Ta thấy 81 . 1114 > 64 . 1113 nên A > B
d) A = 1030 = ( 103 )10 = 100010 ; B = 2100 = ( 210 )10 = 102410
vì 100010 < 102410 nên A < B
e) A = 3450 = ( 33 )150 = 27150
B = 5300 = ( 52 )150 = 25150
vì 27150 > 25150 nên A > B
1, Ta có : \(10^2+11^2+12^2=100+121+144=365\)
\(13^2+14^2=169+196=365\)
Vì : \(365=365\Rightarrow10^2+11^2+12^2=13^2+14^2\)
Vậy \(10^2+11^2+12^2=13^2+14^2\)
2, \(\left(30+25\right)^2=30^2+25^2=900+625=1525\)
Vì : \(1525< 3025\Rightarrow\left(30+25\right)^2< 3025\)
Vậy \(\left(30+25\right)^2< 3025\)
3, \(37\left(3+7\right)=37.10=370\)
\(3^3+7^3=\left(3+7\right)^3=10^3=1000\)
Vì : \(370< 1000\Rightarrow37\left(3+7\right)< 3^3+7^3\)
Vậy \(37\left(3+7\right)< 3^3+7^3\)
4, \(48\left(4+8\right)=48.12=576\)
\(4^3+8^3=\left(4+8\right)^3=12^3=1728\)
Vì : \(576< 1728\Rightarrow48\left(4+8\right)< 4^3+8^3\)
Vậy \(48\left(4+8\right)< 4^3+8^3\)
5, \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(1+2+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-1\)
Vì : \(2^{2011}-1=2^{2011}-1\Rightarrow A=B\)
Vậy A = B
6, Ta có : \(A=2009.2011=2009.\left(2010+1\right)\)
\(=2009.2010+2009\)
\(B=2010^2=2010.2010\)
\(=2010.\left(2009+1\right)=2010.2009+2010\)
Vì : \(2010.2009+2009< 2010.2009+2010\Rightarrow A< B\)
Vậy A < B
Cảm ơn Trần Quỳnh Mai nhé!