Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
so sánh: \(4-\sqrt{2}\) và \(\sqrt{5}\)
\(\left(4-\sqrt{2}\right)^2=18-8\sqrt{2}>18-8\sqrt{2,25}=18-8.1,5=18-12=6>5=\sqrt{5}^2\Rightarrow4-\sqrt{2}>\sqrt{5}\left(vì:\left\{{}\begin{matrix}4-\sqrt{2}>0\\\sqrt{5}>0\end{matrix}\right.\right)\Rightarrow7+4-\sqrt{2}>7+\sqrt{5}\Rightarrow11-\sqrt{2}>7+\sqrt{5}\)
\(b,2006^2-2005.2007=2006^2-\left(2006-1\right)\left(2006+1\right)=2006^2-2006^2+1=1\Rightarrow2006^2>2005.2007\left(1\right)\)
\(\left(2\sqrt{2006}\right)^2=4.2006=8024;\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005.2007}=4012+2\sqrt{2005.2007}=4012+2\sqrt{2006.2006}\left(vì\left(1\right)\right)=8024=\left(2\sqrt{2006}\right)^2\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\left(vì:\left\{{}\begin{matrix}\sqrt{2005}+\sqrt{2007}>0\\2\sqrt{2006}>0\end{matrix}\right.\right)\)
\(c,\left(\sqrt{10}+\sqrt{13}\right)^2=23+2\sqrt{130}>23+2\sqrt{121}\left(130>121\right)=23+2.11=45>4.11=\left(2\sqrt{11}\right)^2\Rightarrow\sqrt{10}+\sqrt{13}>2\sqrt{11}\left(vì\left\{{}\begin{matrix}\sqrt{10}+\sqrt{13}>0\\2\sqrt{11}>0\end{matrix}\right.\right)\)
\(d,\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}< 12+2\sqrt{36}=12+12=24< 15+6\sqrt{6}=\left(3+\sqrt{6}\right)^2\Rightarrow\sqrt{5}+\sqrt{7}< 3+\sqrt{6}\left(vì:\left\{{}\begin{matrix}\sqrt{5}+\sqrt{7}>0\\3+\sqrt{6}>0\end{matrix}\right.\right)\)
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
\(\text{a) Ta có }:\left(\sqrt{7}-\sqrt{2}\right)^2=7-\sqrt{14}+2=9-\sqrt{14}\\ 1^2=1=9-8=9-\sqrt{64}\\ Do\text{ }\sqrt{14}< \sqrt{64}\Rightarrow9-\sqrt{14}>9-\sqrt{64}\\ \Rightarrow\left(\sqrt{7}-\sqrt{2}\right)^2>1^2\\ \Rightarrow\sqrt{7}-\sqrt{2}>1\)
\(\text{b) Ta có: }\left(\sqrt{8}+\sqrt{5}\right)^2=8+\sqrt{160}+5=13+\sqrt{160}\\ \left(\sqrt{7}+\sqrt{6}\right)^2=7+\sqrt{168}+6=13+\sqrt{168}\\ \text{Do }\sqrt{160}< \sqrt{168}\Rightarrow13+\sqrt{160}< 13+\sqrt{168}\\ \Rightarrow\left(\sqrt{8}+\sqrt{5}\right)^2< \left(\sqrt{7}+\sqrt{6}\right)^2\\ \Rightarrow\sqrt{8}+\sqrt{5}< \sqrt{7}+\sqrt{6}\)
\(\text{c) Ta có }:\left(\sqrt{2005}+\sqrt{2007}\right)^2\\ =2005+2\sqrt{2005\cdot2007}+2007\\ =4012+2\sqrt{2005\cdot2007}\\ \left(2\sqrt{2006}\right)^2=4\cdot2006=4012+2\cdot2006\)
\(\text{Lại có }:\sqrt{2005\cdot2007}=\sqrt{\left(2006-1\right)\left(2006+1\right)}=\sqrt{2006^2-1}\\ Do\text{ }\sqrt{2006^2-1}< \sqrt{2006^2}\\ \Rightarrow\sqrt{2005\cdot2007}< 2006\\ \Rightarrow2\sqrt{2005\cdot2007}< 2\cdot2006\\ \Rightarrow4012+2\sqrt{2005\cdot2007}< 4012+2\cdot2006\\ \Rightarrow\left(\sqrt{2005}+\sqrt{2007}\right)^2< \left(2\sqrt{2006}\right)^2\\ \Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)