Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet bt A ta co
A=2016.2017+1/2016.2017
=1+1/2016.2017
xet bt B ta co
B=2017.2018+1/2017.2018
=1+1/2017.2018
vì 1/2016.2017>1/2017.2018
nen 1+1/2016.2017>1+1/2017.2018
suy ra A>B
ai thay mik lam đúng thì k cho mik nha
Ta có : \(\frac{2017.2018+1}{2017.2018}=1+\frac{1}{2017.2018}\)
\(\frac{2018.2019+1}{2018.2019}=1+\frac{1}{2018.2019}\)
Mà : \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\) => \(\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)
a) \(\frac{53}{57}=\frac{530}{570}\)
Ta có : 1 - \(\frac{530}{570}\)= \(\frac{40}{570}\) ; 1 - \(\frac{531}{571}=\frac{40}{571}\)
Vì \(\frac{40}{570}>\frac{40}{571}\) nên \(\frac{53}{57}< \frac{531}{571}\)
Vì 2016x2017-\(\frac{1}{2016x2017}\)=4066272
2017x2018-\(\frac{1}{2017x2018}\)=4070306
Mà 4066272<4070306
Nên a<b
a) Ta có :
N = 2018 + 2019/2019 + 2020
= 2018/2019 + 2020 + 2019/2019 + 2020
Ta thấy : 2018/2019 + 2020 < 2018/2019 ( Vì 2019 + 2020 > 2019 )
2019/2019 + 2020 < 2019/2020 ( Vì 2019 + 2020 > 2020 )
=> 2018/2019 + 2020 + 2019/2019 + 2020 < 2018/2019 + 2019/2020
=> M > N
b) Mk ko bt làm !!
c) Ta có :
19/31 > 1/2
17/35 < 1/2
=> 19/31 > 17/35
d) Ta có :
3535/3434 = 1 + 1/3534
2323/2322 = 1 + 1/2322
Ta thấy :
1/3534 < 1/2322 ( Vì 3534 > 2322 )
=> 1 + 1/3534 < 1 + 1/2322
=> 3535/3534 < 2323/2322
Hok tốt !
\(E=\dfrac{1}{2000.2001}+\dfrac{1}{2001.2002}+...+\dfrac{1}{2017.2018}\)
\(=\dfrac{1}{2000}-\dfrac{1}{2001}+\dfrac{1}{2001}-\dfrac{1}{2002}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(=\dfrac{1}{2000}-\dfrac{1}{2018}=\dfrac{9}{2018000}\)
\(E=\dfrac{1}{2000.2001}+\dfrac{1}{2001.2002}+...+\dfrac{1}{2017.2018}\\ =\dfrac{1}{2000}-\dfrac{1}{2001}+\dfrac{1}{2001}-\dfrac{1}{2002}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =\dfrac{1}{2000}-\dfrac{1}{2018}\)
= (bạn tự tính nha)
a.\(\frac{2015.2016-1}{2015.2016}=1-\frac{1}{2015.2016}\)
\(\frac{2016.2017-1}{2016.2017}=1-\frac{1}{2016.2017}\)
vì \(\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
=>\(-\frac{1}{2015.2016}< -\frac{1}{2016.2017}\)
=>\(1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
A=\(\dfrac{2016.2017+1}{2016.2017}=\dfrac{2016.2017}{2016.2017}+\dfrac{1}{2016.2017}=1+\dfrac{1}{2016.2017}\)
A=\(\dfrac{2017.2018+1}{2017.2018}=\dfrac{2017.2018}{2017.2018}+\dfrac{1}{2017.2018}=1+\dfrac{1}{2017.2018}\)
Mà 1=1; \(\dfrac{1}{2016.2017}\)>\(\dfrac{1}{2017.2018}\) nên A>B