Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
\(A=\frac{2}{1.5}+\frac{2}{5.9}+\frac{2}{9.13}+....+\frac{2}{81.85}\)
\(\Rightarrow2A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{81.85}\)
\(\Rightarrow2A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{85}\)
\(\Rightarrow2A=1-\frac{1}{85}\)
\(\Rightarrow A=\frac{84}{85}:2=\frac{42}{85}\)
tính A còn lại tự tính nha
a) A = 2/1x5 + 2/5x9 + 2/9x13 +....+2/81x85
\(\frac{2}{1x5}+\frac{2}{5x9}+\frac{2}{9x13}+...+\frac{2}{81x85}\)
\(A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{85}\)
\(A=1-\frac{1}{85}\)
\(\Rightarrow A=\frac{84}{85}\)
k nha
Lời giải:
$A=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+...+\frac{5}{(5n-1)(5n+4)}\right)$
$\frac{3}{5}\left(\frac{14-9}{9.14}+\frac{19-14}{14.19}+\frac{24-19}{19.24}+...+\frac{(5n+4)-(5n-1)}{(5n-1)(5n+4)}\right)$
$=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+\frac{1}{19}-\frac{1}{24}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)$
$=\frac{3}{5}(\frac{1}{9}-\frac{1}{5n+4})$
$=\frac{1}{15}-\frac{3}{5(5n+4)}< \frac{1}{15}$