Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^24 = (2^3)^8 = 8^8
3^16 = (3^2)^8 = 9^8
Vì 8^8 < 9^8 => 2^24 < 3^16
99^20 = 99^10 . 99^10 < 99^10 . 101^110 = (99.101)^10 = 9999^10
=> 99^20 < 9999^10
2^91 = (2^13)^7 = 8192^7
5^35 = (5^5)^7 = 3125^7
Vì 8192^7 > 3125^7 => 2^91 > 5^35
k mk nha
- Ánh Nguyễn Văn
- Câu dưới nha
- \(3^{n+2}-2^{n+2}-3^n-2^n\)
- \(\left(3^{n+2}+3^n\right)\left(-2^{n+2}-2^n\right)\)
- \(3^n."\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
- \(3^n.10-2^n.5\)
- \(3^n.10-2^{n-1}.10\)
- Vậy \(10.\left(3^n-2^{n-1}\right)\)
- Chia hết cho 10
Chứng tỏ: Với mọi n là số nguyên dương thì:
(3n+2 - 2n+2 + 3n - 2n) chia hết cho 10
a, \(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Vì 8 < 9 nên :
=> \(8^8< 8^9\)
\(\Rightarrow2^{24}< 3^{16}\)
b, \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(\Rightarrow8^{100}< 9^{100}\) ( vì 8 < 9 )
\(\Rightarrow2^{300}< 3^{200}\)
\(\frac{19}{9^2.10^2}+...+\frac{7}{3^2.4^2}+\frac{5}{2^2.3^2}+\frac{3}{1^2.2^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{8^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1< \frac{11}{10}\)