\(6x^2+5y^2=74\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

5y^2>=0 
6x^2<=74 
x^2<=12 
x^2=1;4;9 
tu tim y^2 nhe

7 tháng 8 2016

\(x^2-6x+8=x\left(x-1\right)-5\left(x-1\right)+3=\left(x-1\right)\left(x-5\right)+3\)

6 tháng 8 2016

\(pt\Leftrightarrow y\left(x-5\right)=x^2-6x+8\)

\(x=5\text{ thì pt trở thành }0y=3\text{ (vô nghiệm)}\)

Xét \(x\ne5\)

\(pt\Leftrightarrow y=\frac{x^2-6x+8}{x-5}=x-1+\frac{3}{x-5}\)

Tới đây, bài toán đã đơn giản hơn.

5 tháng 1 2019

Ta có:

\(x^2-xy=6x-5y-8\)

\(\Leftrightarrow x\left(x-y\right)-5\left(x-y\right)=x-8\)

\(\Leftrightarrow\left(x-5\right)\left(x-y\right)-\left(x-5\right)=-3\)

\(\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Ta có bảng sau:

x - 5 -1 -3 1 3
x - y - 1 3 1 -3 -1
x 4 2 6 8
y 0 0 8 8

Vậy...

5 tháng 1 2019

\(x^2-xy=6x-5y-8\\ \Leftrightarrow\left(x^2-5x\right)-\left(xy-5y\right)-\left(x-5\right)=-3\\ \Leftrightarrow x\left(x-5\right)-y\left(x-5\right)-\left(x-5\right)=-3\\ \Leftrightarrow\left(x-y-1\right)\left(x-5\right)=-3\\ =\left(-1\right)\cdot3=3\cdot\left(-1\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1\)

Do \(x;y\in Z\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=-1\\x-5=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=3\\x-5=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=1\\x-5=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-3\\x-5=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-y-1=-1\\x=8\end{matrix}\right.\\\left\{{}\begin{matrix}4-y-1=3\\x=4\end{matrix}\right.\\\left\{{}\begin{matrix}2-y-1=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}6-y-1=-3\\x=6\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=8\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có tập nghiệm nguyên \(\left\{x;y\right\}=\left\{8;8\right\};\left\{4;0\right\};\left\{2;0\right\};\left\{6;8\right\}\)

13 tháng 10 2019

\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)

y nguyên => y = -1; 0; 1

y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)

y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)

vậy pt có nghiệm (x;y) = (0;0)  (4;0)  (2;1)

4 tháng 2 2017

Ta có:  

x+ 2y+ 3xy + 3x + 5y = 15

<=> x+ 2y+ 3xy + 3x + 5y + 2 = 17

<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17

<=> (x + y + 2)(x + 2y + 1) = 17

=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)

Giải ra là tìm được x,y nhé

25 tháng 8 2019

VeryVery good.Thanks. I will give 1  for you.Love

30 tháng 9 2017

\(x^2-4xy+5y^2=169\)

\(x^2-4xy+4y^2+y^2-169=0\)

\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)

\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)

30 tháng 9 2017

b/    \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)

        \(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)

        \(\Rightarrow y^2\le13^2\)và    \(13^2-y^2\)là số chính phương .  Do đó :

      \(y^2=0\)hay  \(y=0\)

     Thay vào ta có các nghiệm sau   \(\left(13,0\right);\left(-13;0\right)\)

  

28 tháng 11 2019

https://olm.vn/hoi-dap/detail/2885694291.html?pos=1676926895