\(\sqrt{x^2+x+4}< x+5\) là

A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2020

Với \(x\le-5\Rightarrow\left\{{}\begin{matrix}VT>0\\VP\le0\end{matrix}\right.\) BPT vô nghiệm

Với \(x>-5\) hai vế dương, bình phương:

\(x^2+x+4< \left(x+5\right)^2\)

\(\Leftrightarrow x^2+x+4< x^2+10x+25\)

\(\Rightarrow9x>-21\Rightarrow x>-\frac{7}{3}\)

Mà x nguyên nên \(-2\le x\le10\)

\(10-\left(-2\right)+1=13\) giá trị thỏa mãn

NV
22 tháng 10 2019

a/ ĐKXĐ: \(0\le x\le4\)

\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)

Đặt \(\sqrt{-x^2+4x}=a\ge0\)

\(-a^2.a-a^2+2=0\)

\(\Leftrightarrow a^3+a^2-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)

b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)

Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)

\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

NV
22 tháng 10 2019

c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)

\(a^3+10-14=2a\)

\(\Leftrightarrow a^3-2a-4=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)

d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)

Đặt \(\sqrt[3]{3x^2+x+4}=a\)

\(2a^3+a-18=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)

e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)

Đặt \(\sqrt{x^2+5x+2}=a\ge0\)

\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)

Bài cuối xấu quá, chắc nhầm số liệu

1 tháng 10 2019

a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)

\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)

Với x = 0 \(\Rightarrow pttm\)

Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)

1 tháng 10 2019

b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)

\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)

16 tháng 5 2017

a) Là một mệnh đề

b) Là một mệnh đề chứa biến

c) Không là mệnh đề, không là mệnh đề chứa biến

d) Là một mệnh đề

26 tháng 10 2021

b

NV
22 tháng 10 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x^2-2x-3}=a\ge0\Rightarrow x^2-2x=a^2+3\)

\(a^2+3+3a=7\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2-2x-3=1\Rightarrow x^2-2x-4=0\Rightarrow x=...\)

b/ \(\Leftrightarrow x^2-4x+6-\sqrt{x^2-4x+12}=0\)

\(\Leftrightarrow x^2-4x+12-\sqrt{x^2-4x+12}-6=0\)


Đặt \(\sqrt{x^2-4x+12}=a>0\)

\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+12}=3\Rightarrow x^2-4x+3=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ \(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)

Đặt \(\sqrt{x^2+11}=a\)

\(a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+11}=6\Rightarrow x^2+11=36\Rightarrow...\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)

Đặt \(\sqrt{2x^2+4x+1}=a\ge0\Rightarrow2x^2+4x=a^2-1\Rightarrow x^2+2x=\frac{a^2-1}{2}\)

\(\frac{a^2-1}{2}-1+a=0\)

\(\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+1}=1\Rightarrow2x^2+4x=0\Rightarrow...\)

e/

\(\Leftrightarrow x^2+5x+4-5\sqrt{x^2+5x+28}=0\)

Đặt \(\sqrt{x^2+5x+28}=a>0\Rightarrow x^2+5x=a^2-28\)

\(a^2-28+4-5a=0\)

\(\Leftrightarrow a^2-5a-24=0\Rightarrow\left[{}\begin{matrix}a=8\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow...\)

P/s: tất cả các nghiệm sau khi giải ra x chắc chắn đều thỏa mãn