Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)
\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)
\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)
\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)
\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)
a/
\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)
\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)
\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow sinx=\pi+k2\pi\)
Mà \(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)
\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn
Pt đã cho vô nghiệm
f/
\(cos^2x-sin^2x+sin4x=0\)
\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)
\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)
\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
b/
\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
4.
ĐKXĐ: \(2cos^2x+sinx-1\ne0\)
\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)
Khi đó pt tương đương:
\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
sin3x + 1=2sin22x
<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)
<=> sin3x + 1 = 1 - cos4x
<=> sin3x = -cos4x
<=> sin3x + cos4x = 0
<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).
<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0
<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0
<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0
<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)
<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)
a/
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(\Leftrightarrow3tan^2x+8tanx+8\sqrt{3}-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k\pi\end{matrix}\right.\)
b/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(tan^2x+2tanx-2=\frac{1}{2}\left(1+tan^2x\right)\)
\(\Leftrightarrow tan^2x+4tanx-5=0\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-5\right)+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(sinx+1\right)\left(1-2sin^2x-1\right)=0\)
\(\Leftrightarrow sin^2x\left(sinx+1\right)=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)
\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)
\(\Leftrightarrow\sin x=0\)
hay \(x=k\Pi\)