Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.S = 2 + 22 + 23 + ...+ 211
Lấy 2.S - S = (2 + 22 + 23 + ...+ 211) - (1 + 2 + 22 + ...+ 210)
=> S = 211 - 1
S = 1+2+22+23+...+210
2S = 2+22+23+24+...+211
2S-S = S = 2+22+23+24+...+211-1-2-22-23-...-211
S = 211-1
S = 2048-1
S = 2047
S=1+3+3^2+....+3^18+3^19
3S=3+3^2+3^3+...+3^19+3^20
3S-S=3+3^2+3^3+...+3^19+3^20-1-3-3^2-...-3^18-3^19
2S=3^20-1
S=(3^20-1):2
ta có
3S=3+32+33+..........................+319+320
3S-S=320-1
2S=320-1
S=320-1/2
a) S1 = 2.4 + 4.6 + 6.8 + ...+ 100.102
6.S1 = 2.4.6 + 4.6.(8 - 2) + 6.8.(10 - 4) + ...+ 100.102.(104 - 98)
6.S1 = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 + ....+ 100.102.104 - 98.100.102
6.S1 = (2.4.6 + 4.6.8 + 6.8.10 + ...+ 100.102.104) - (2.4.6 + 4.6.8 + ...+ 98.100.102)
6.S1 = 100.102.104 => S1 = 100.102.104 : 6 = ...
b) S2 = (1 - 2)(1+ 2) + (3 - 4).(3 + 4) + ...+ (55 - 56).(55 + 56) + 572
= (-1).(1 + 2) + (-1).(3 + 4) + ...+ (-1).(55 + 56) + 572 = (-1).(1 + 2+ 3 + 4+...+ 55 + 56) + 572 = -(1+ 56).56 : 2 + 572 = ...
c) S3 = 1.2.( 3 - 1) + 2.3.(4 - 1) + 3.4.(5 - 1) + ....+ 20.21.(22 - 1)
= (1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22) - (1.2 + 2.3 + ...+ 20.21)
Tính A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22
4.A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5(6 - 2) + ...+ 20.21.22.(23 - 19)
4.A = (1.2.3.4 + 2.3.4.5 + ...+ 20.21.22.23) - (1.2.3.4 + 2.3.4.5 + ....+ 19.20.21.22)
4.A = 20.21.22.23 => A =
Tính B = 1.2 + 2.3 + ...+ 20.21
3.A = 1.2.3 + 2.3.(4 - 1) + ...+ 20.21.(22 - 19) = (1.2.3 + 2.3.4 + ...+ 20.21.22) - (1.2.3+ ...+ 19.20.21) = 20.21.22 => B = ...
d) S4 = 1 + 8 + 27 + 64 + 125 = ....
a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949
9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)
b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:
S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)
Vậy S chia hết cho 10
\(S=1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(2S-S=2+2^2+2^3+...+2^{10}-1-2-2^2-...-2^9\)
\(S=2^{10}-1\)
\(P=4.\frac{5}{4}.2^8\)
\(P=2^2.2^8.\frac{5}{4}=2^{10}.\frac{5}{4}\)
\(\Rightarrow S< P\)
A = 2^0 + 2^1 + 2^2 + 2^3 + ...+ 2^50
=> 2A = 2^1 + 2^2 + 2^3 + 2^4 + ...+ 2^51
=> 2A-A = 2^51 - 2^0
A = 2^51 - 1
\(S=1+2+2^2+.......+2^{89}\)
\(\Leftrightarrow2S=2+2^2+........+2^{90}\)
\(\Leftrightarrow2S-S=\left(2+2^2+........+2^{89}+2^{90}\right)-\left(1+2+........+2^{89}\right)\)
\(\Leftrightarrow S=2^{90}-1\)
S = 1 + 2 + 22 + 23 + ......... + 289
S = 20 + 21 + 22 + 23 + ....... + 289
21 . S = 21 . ( 20 + 21 + 22 + 23 + ...... + 289 )
2S = 21 + 22 + 23 + 24 + .......... 290
2S - S = ( 21 + 22 + 23 + 24 + ....... + 290 ) - ( 1 + 2 + 22 + 23 + ..... + 289 )
S = 290 - 1
Vậy S = 290 - 1