\(\frac{1}{2}\)(1+2) + \(\frac{1}{3}\)(1+2+3) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Huong dẫn: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\) ( n\(\in\)N*) áp dụng vào từng cái ngoặc 

7 tháng 12 2019

\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.......+\frac{1}{20}\left(1+2+3+......+20\right)\)

  \(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+......+\frac{1}{20}.\frac{20.21}{2}\)

   \(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+......+\frac{21}{2}=\frac{2+3+4+.....+21}{2}=\frac{20.23}{2}=230\)

8 tháng 9 2016

\(B=1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}.\left(1+2+3\right)-\frac{1}{4}.\left(1+2+3+4\right)-...-\frac{1}{20}.\left(1+2+3+...+20\right)\)

\(B=1-\frac{1}{2}.\left(1+2\right).2:2-\frac{1}{4}.\left(1+4\right).4:2-...-\frac{1}{20}.\left(1+20\right).20:2\)

\(B=1-3:2-5:2-...-21:2\)

\(B=1-3.\frac{1}{2}-5.\frac{1}{2}-...-21.\frac{1}{2}\)

\(B=1-\frac{1}{2}.\left(3+5+...+21\right)\)

Đặt C = 3 + 5 + ... + 21

Số số hạng của tổng C là: (21 - 3) : 2 + 1 = 10 (số)

=> C = (3 + 21) x 10 : 2 = 24 x 5 = 120

=> \(A=1-\frac{1}{2}.120\)

\(A=1-60=-59\)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok