Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{18-\sqrt{128}}\)
= \(\sqrt{18-8\sqrt{2}}\)
= \(\sqrt{16-2×4×\sqrt{2}+2}\)
= \(4-\sqrt{2}\)
Từ đó cái ban đầu
= \(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
= \(\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
= \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
= \(\sqrt{6+2\sqrt{3}-2}\)
= \(\sqrt{4+2\sqrt{3}}\)
= \(\sqrt{3}+1\)
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
a) \(\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{2}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}\)
\(=\frac{\left|\sqrt{3}-1\right|}{2}=\frac{\sqrt{3}-1}{2}\)
b) \(\sqrt{8}\cdot\sqrt{3-\sqrt{5}}=\sqrt{4}\cdot\sqrt{6-2\sqrt{5}}=2\sqrt{5-2\sqrt{5}+1}=2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\cdot\left|\sqrt{5}-1\right|=2\left(\sqrt{5}-1\right)=2\sqrt{5}-2\)
Ta có :
\(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)
Ta có :
\(18-\sqrt{128}=18-8\sqrt{2}=16-2.4.\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
Vậy
\(\sqrt{18-\sqrt{128}}=4-\sqrt{2}\)
Thay vào ta có
\(\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
Lại có :
\(4+2\sqrt{3}=3+2.1.\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)
Do đó :
\(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Vậy :
\(\sqrt{6-2\sqrt{4+2\sqrt{3}}}=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2.1.\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
Vậy : \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}=\sqrt{3}-1\)
\(D=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\cdot\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\sqrt{6+2\sqrt{2\left(\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}\right)}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\sqrt{6+2\sqrt{2\left(\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}\right)}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\sqrt{6+2\sqrt{2\left(\sqrt{2}+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}\right)}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2\cdot\left[6+2\sqrt{2\left(2\sqrt{3}+4\right)}\right]}\)
\(=\sqrt{\left(3-2\sqrt{3}+1\right)\left(6+2\sqrt{4\sqrt{3}+8}\right)}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{4\sqrt{3}+8}\right)}\)
đến đây cũng được rồi nếu muốn có thể rút tiếp:
\(=\sqrt{24+8\sqrt{4\sqrt{3}+8}-12\sqrt{3}-4\sqrt{3\left(4\sqrt{3}+8\right)}}\)
\(=\sqrt{24+8\sqrt{4\sqrt{3}+8}-12\sqrt{3}-4\sqrt{12\sqrt{3}+24}}\)
\(B=\sqrt{18-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12+5+1-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{12+1-4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{5}+1-2\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{3}-1-\sqrt{5}-2\sqrt{3}+1=-\sqrt{5}\)
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
\(=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\cdot\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)