\(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Đặt \(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+x+xy+y}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{\left(x+y\right).\left(x-2y\right)}\right):\dfrac{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}{\left(x+y\right).\left(x+1\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(A=\left(\dfrac{\left(x-y\right).\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right).\left(2y-x\right)}.\dfrac{\left(x+y\right).\left(x+1\right)}{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}\right):\dfrac{2x^2+y+2}{x+1}\)

\(A=\left(\dfrac{2x^2+y-2}{2y-x}.\dfrac{x+1}{2x^2+y-2}\right).\dfrac{1}{x+1}\)

\(A=\dfrac{1}{2y-x}\)

Thay \(x=-1,76\)\(y=\dfrac{3}{25}\) vào biểu thức ta được:

\(A=\dfrac{1}{2.\dfrac{3}{25}-\left(-1,76\right)}\)

\(A=\dfrac{1}{2}\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

1 tháng 3 2018

2y^2 +xy -x^2 =y(y+x) +y^2 -x^2 =(x+y)(2y-x)

4x^2 +4x^2 y +y^2 -4 =4x^2 (y+1) +y^2-4 có vẻ hệ số lệch lại nhỉ

x^2 +y +xy +x =x(x+y) +x+y =(x+y) (x+1)

\(B=\dfrac{x-y}{2y-x}+\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}=\dfrac{x^2-y^2+\left(x^2+y^2+y-2\right)}{\left(x+y\right)\left(2y-x\right)}=\dfrac{2x^2+y-2}{\left(x+y\right)\left(2y-x\right)}\)\(C=\dfrac{4x^2\left(y+1\right)+y^2-4}{\left(x+y\right)\left(x+1\right)}\)

\(A=B:C=\dfrac{2x^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\dfrac{\left(x+y\right)\left(x+1\right)}{4x^2\left(y+1\right)+y^2-4}\)

\(A=\dfrac{2x^2+y-2}{\left(2y-x\right)}.\dfrac{\left(x+1\right)}{4x^2\left(y+1\right)+y^2-4}\)

14 tháng 12 2018

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)

b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)

\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)

31 tháng 5 2017

\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)

\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

29 tháng 11 2018

a) \(A=\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)

\(A=\dfrac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(A=\dfrac{2x^2-2y^2+2y^2}{x}\)

\(A=\dfrac{2x^2}{x}=2x\)

b) \(B=\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)

\(B=\dfrac{xy}{2x-y}-\dfrac{1-x^2}{2x-y}\)

\(B=\dfrac{xy-1+x^2}{2x-y}\)

\(B=\dfrac{x^2+xy-1}{2x-y}\)

c) \(C=\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)

\(C=\dfrac{4x-1-7x+1}{3x^2y}\)

\(C=\dfrac{-3x}{3x^2y}\)

\(C=\dfrac{-1}{xy}\)

a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)