Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}+\sqrt{5}-\sqrt{10}-\sqrt{7}=\sqrt{10}-1+\sqrt{5}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{5}-\sqrt{7}-1\)
= \(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
=\(\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{2}+\sqrt{5}\right)}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}\)
= \(\sqrt{3}+\sqrt{5}+3\)
Đặt: \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)
=> \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)
=> \(B^2=14+2\sqrt{49-5}\)
=> \(B^2=14+2\sqrt{44}\)
=> \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)
ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ \(\sqrt{7+2\sqrt{11}}\) THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!
NẾU SỬA ĐỀ BÀI NHƯ TRÊN:
=> \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{2}-\sqrt{2}+1\)
=> \(A=1\)
ĐÓ BÂY GIỜ RA A = 1 RẤT ĐẸP