Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.
Gọi phân số cần tìm là a/b
Ta có
\(\frac{a}{b}=\frac{3}{4}\)
\(\frac{a+60}{b}=\frac{9}{10}\)
\=>\(\frac{a}{b}+\frac{60}{b}=\frac{9}{10}\)
=>\(\frac{3}{4}+\frac{60}{b}=\frac{9}{10}\)
\(\frac{60}{b}=\frac{9}{10}-\frac{3}{4}=\frac{3}{20}=\frac{60}{400}\)
=>b=400 , a=300
\(=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{2}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{2}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{2}{27}\)
\(=-1+\frac{1}{27}-\frac{2}{27}\)
\(=-\frac{28}{27}\)
Ta có: \(\frac{x}{42}=\frac{15}{21}=\frac{5}{7}\Rightarrow7x=42.5\)
\(\Rightarrow7x=210\)
\(\Rightarrow x=30\)
Tương tự: \(\frac{45}{y}=\frac{5}{7}\Rightarrow5y=45.7\)
\(\Rightarrow5y=315\)
\(\Rightarrow y=63\)
\(\frac{120}{z}=\frac{5}{7}\Rightarrow5z=120.7\)
\(\Rightarrow5z=840\)
\(\Rightarrow z=168\)
Vậy x = 30; y = 63 và z = 168
Ta có : \(\frac{15}{21}=\frac{5}{7}\rightarrow\frac{x}{42}=\frac{45}{y}=\frac{120}{z}=\frac{5}{7}\)
Mà : \(\frac{x}{42}=\frac{5}{7}\rightarrow x=\frac{42\cdot5}{7}=30\)
\(\frac{45}{y}=\frac{5}{7}\rightarrow y=\frac{45\cdot7}{5}=63\)
\(\frac{120}{z}=\frac{5}{7}\rightarrow z=\frac{120.7}{5}=168\)
vào mt bấm tay mà rút gọn đấy bn