Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử nhé, ko chắc đâu
a) \(B=\frac{n^3+2n^2+2n+1}{n^3+2n^2+2n+1}-\frac{2n+2}{n^3+2n^2+2n+1}=1-\frac{2\left(n+1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=1-\frac{2}{n^2+n+1}=\frac{n^2+n-1}{n^2+n+1}\)
b) Đặt (n2+n-1 ; n2+n+1) = d
Thì \(\left\{{}\begin{matrix}n^2+n-1⋮d\\n^2+n+1⋮d\end{matrix}\right.\Rightarrow2⋮d\)
Dễ thấy d khác 2 vì n2+n-1 ; n2+n+1 luôn là số lẻ với mọi n thuộc Z.
Do đó d = 1 hay phân số rút gọn luôn tối giản
\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n^3+n^2\right)+\left(n^2-1\right)}{\left(n^3+n^2\right)+\left(n^2+n\right)+\left(n+1\right)}=\frac{n^2\left(n+1\right)+\left(n+1\right)\left(n-1\right)}{n^2\left(n+1\right)+n\left(n+1\right)+\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
\(Gọi:d=\left(n^2+n+1,n^2+n-1\right)\Rightarrow n^2+n+1-\left(n^2+n-1\right)⋮d\Leftrightarrow n^2-n^2+n-n+1+1⋮d\Leftrightarrow2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
\(n^2+n+1=n\left(n+1\right)+1\)n và n+1 là 2 so tự nhiên liên tiếp => có 1 so chan trong 2 so n và n+1 \(\Rightarrow n\left(n+1\right)chan\Rightarrow n\left(n+1\right)+14le\Rightarrow n^2+n+1\text{ }le\Rightarrow d\text{ }le\Rightarrow d=1\Rightarrow\forall n\in Z\text{ thì phân so rút gọn toi gian}\)
\(P=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
ĐKXĐ : \(n\ne-1\)
\(=\frac{n^3+n^2+n^2+n-n-1}{n^3+2n^2+2n+1}=\frac{n^2\left(n+1\right)+n\left(n+1\right)-\left(n+1\right)}{\left(n^3+1\right)+2n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
Với n nguyên, đặt ƯC( n2 + n - 1 ; n2 + n + 1 ) = d
=> n2 + n - 1 ⋮ d và n2 + n + 1 ⋮ d
=> ( n2 + n + 1 ) - ( n2 + n - 1 ) ⋮ d
=> n2 + n + 1 - n2 - n + 1 ⋮ d
=> 2 ⋮ d => d = 1 hoặc d = 2
Dễ thấy n2 + n + 1 ⋮/ 2 ∀ n ∈ Z ( bạn tự chứng minh )
=> loại d = 2
=> d = 1
=> ƯCLN( n2 + n - 1 ; n2 + n + 1 ) = 1
hay P tối giản ( đpcm )
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản
a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)
Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)
c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)
Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)
Mà \(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)
a: \(=24x^{2m-1+3-2m}y^{6-3m}-\dfrac{24}{7}y^{3n-7+6-3n}\cdot x^{3-2m}+8x^{3-2m+2m}\cdot y^{6-3n+3m}-24x^{3-2m}y^{6-2n+2}\)
\(=24x^2y^{6-3m}-\dfrac{24}{7}x^{3-2m}\cdot y^{-1}+8x^3y^{-3n+3m+6}-24x^{3-2m}y^{-2n+8}\)
b: \(=2x^{2n+1-2n}-6x^{2n+2-2n}+3x^{2n-1+1-2n}-9x^{2n-1+2-2n}\)
\(=2x-6x^2+3-9x\)
\(=-6x^2-7x+3\)
Lời giải:
Ta có:
\(n^3+2n^2-1=(n^3+n^2)+(n^2-1)\)
\(=n^2(n+1)+(n-1)(n+1)=(n+1)(n^2+n-1)\)
Và:
\(n^3+2n^2+2n+1=n^3+n^2+(n^2+2n+1)\)
\(=n^2(n+1)+(n+1)^2=(n+1)(n^2+n+1)\)
Do đó:
\(M=\frac{(n+1)(n^2+n-1)}{(n+1)(n^2+n+1)}=\frac{n^2+n-1}{n^2+n+1}\)