Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
1.
\(a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
2.
\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)( mạo danh sửa đề)
\(c.x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(1a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3\sqrt{2}+2}-\sqrt{9-2.3\sqrt{2}+2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\sqrt{2}\)\(2a.x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)
\(c.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)
a) Ta có: \(\sqrt{11-2\sqrt{10}}\)
\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)
\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)
b) Ta có: \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|\)
\(=\sqrt{7}-\sqrt{2}\)
c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)
\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)
\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)
\(=3+2\sqrt{3}+2\sqrt{2}\)
h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)
\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)
\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)
\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)
\(=7-\sqrt{45}-7-\sqrt{45}\)
\(=-2\sqrt{45}=-6\sqrt{5}\)
i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)
\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)
\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\cdot\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2\)
\(=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Leftrightarrow A=\sqrt{5}+1\)
\(a,\sqrt{33+20\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{8+2.2\sqrt{2}.5+25}-\sqrt{2-2.\sqrt{2}.3+9}\)
\(=\sqrt{\left[2\sqrt{2}+5\right]^2}-\sqrt{\left[\sqrt{2}-3\right]^2}\)
\(=2\sqrt{2}+5-\left(3-\sqrt{2}\right)\)
\(=2+\sqrt{2}\)
chúc bn học tốt
a) \(\sqrt{\left(2\sqrt{2}+5\right)^2}\) \(-\) \(\sqrt{\left(3-\sqrt{2}\right)^2}\)= \(|2\sqrt{2}+5|\)\(-\)\(|3-\sqrt{2}|\)
\(=\)\(2\sqrt{2}+5-3+\sqrt{2}=2+3\sqrt{2}\)
b)\(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)
a/ \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}+\sqrt{2}\right|+\left|2\sqrt{3}-\sqrt{2}\right|=\sqrt{3}+\sqrt{2}+2\sqrt{3}-\sqrt{2}=3\sqrt{3}\) (Vì \(\sqrt{3}+\sqrt{2}>0\) , \(2\sqrt{3}-\sqrt{2}>0\) )
b/ \(\sqrt{5-2\sqrt{6}}+\sqrt{14-4\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|+\left|2\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}+2\sqrt{3}-\sqrt{2}=3\sqrt{3}-2\sqrt{2}\)
c/ \(11-\sqrt{33}=\sqrt{11}.\sqrt{11}-\sqrt{3}.\sqrt{11}=\sqrt{11}\left(\sqrt{11}-\sqrt{3}\right)\)