Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\cdot\frac{48}{49}=\frac{1}{x}\)
\(\frac{1}{x}=\frac{24}{49}\)
=>x=49/24
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{47}+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\\ \frac{1}{2}-\frac{1}{98}=\frac{1}{x}\\ \frac{49-1}{98}=\frac{1}{x}\\ \frac{24}{49}=\frac{1}{x}\\ \Rightarrow24x=49\\ x=\frac{49}{24}\\ x=2\frac{1}{24}\)
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(P=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{47}-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\frac{48}{49}\)
\(P=\frac{24}{49}\)
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(P=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\frac{48}{49}\)
\(P=\frac{24}{49}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
\(1\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(1\frac{1}{3}+\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}.\frac{46}{147}=\frac{1}{x}\)
\(\frac{4}{3}+\frac{23}{147}=\frac{1}{x}\)
\(\frac{73}{49}=\frac{1}{x}\)
=>\(x=\frac{49.1}{73}=\frac{49}{73}\Rightarrow\)I x I= \(\frac{49}{73}\)
Đặt tên bthuc là A
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=1-\frac{1}{21}=\frac{20}{21}\)
=>\(A=\frac{20}{21}:2=\frac{10}{21}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)
\(=\frac{9}{19}\)
gọi biểu thức là A
ta có :
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...\frac{1}{19.21}\)
=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}...\frac{2}{19.21}\)
2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{21}\)
2A = 1 - \(\frac{1}{21}\)
2A = \(\frac{20}{21}\)
A = \(\frac{20}{21}:2=\frac{10}{21}\)
theo công thức, ta tính đc:
A = 1- 1/3 + 1/3 - 1/5 + 1/5 -1/7 +..... + 1/49 - 1/51
=> A bằng 1- 1/51 ( các cặp phân số đối nhau thì lược bỏ như - 1/3 và + 1/3 )
1-1/3=2/3 chứ ko phải 1-1/3=1/3 đâu nha bạn