Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần b tương tự phần a nên em làm câu a và c thôi :
a, \(M=1-2+2^2-2^3+...+2^{2012}\)
\(2M=2-2^2+2^3-2^4+...+2^{2013}\)
\(3M=2^{2013}+1\)
\(M=\frac{2^{2013}+1}{3}\)
c, \(E=2^{100}-2^{99}-2^{98}-...-1\)
\(E=2^{100}-\left(2^{99}+2^{98}+...+1\right)\)
đặt \(A=2^{99}+2^{98}+...+1\)
\(2A=2^{100}+2^{98}+...+2\)
\(2A-A=2^{100}-1\) hay \(A=2^{100}-1\)
ta có :
\(E=2^{100}-\left(2^{100}-1\right)\)
\(E=2^{100}-2^{100}+1=1\)
\(\frac{2^7.91-2^6.20}{3^3.12+3^4.28}=\frac{2^6.2.91-2^6.20}{3^3.12+3^3.3.28}=\frac{2^6.189-2^6.20}{3^3.12+3^3.84}=\frac{2^6.\left(189-20\right)}{3^3.\left(12+84\right)}=\frac{2^6.169}{3^3.96}\)
Ta có:
B = 3 - 32 + 33 - 34 + ...... + 31999 - 32000
=> 3B = 32 - 33 + 34 - 35 + ...... + 32000 - 32001
=> 3B + B = 4B = 3 - 32001
=> 32001 = 3 - 4B
Vậy n = 2001
1/
= -10 - ( -10) - 75 + 4
= 0 - 75 + 4
= -71
2/ (-5)^2 : (-5) = -5
3/ \(\Leftrightarrow\orbr{\begin{cases}n+1< 0\\n+3< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n>-1\\n>-3\end{cases}}\)
a) -10 - (-10) + 75 : (-1)3 + (-2)3 : (-2)
= -10 + 10 + 75 : (-1) + (-8) : (-2)
= 0 + (-75) + 4
= 0 - 75 + 4
= -71
b) E = (-52) : (-5)
E = (-25) : (-5)
E = 5
c) (n + 1)(n + 3) < 0
=> \(\hept{\begin{cases}n+1< 0\\n+3>0\end{cases}}\Rightarrow\hept{\begin{cases}n< -1\\n>-3\end{cases}}\Rightarrow-3< n< -1\)
Hoặc \(\hept{\begin{cases}n+1>0\\n+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}n>-1\\n< -3\end{cases}}\)(Loại)
Vậy -3 < n < -1
chac o trong cau hoi tuong tu co day
3B=32-33+34-35+..............+32000-32001
3B+B=(32-33+34-35+............+32000-32001)-(3-32+33-34+............+31999-32000)
3B+B=3-32001
=>4B=3-32001
=>3-4B=-32001
=>n=2001
N = 3 - 32 - 33 - 34 - ...... - 31999 - 32000
3N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001
3N - N = (32 - 33 - 34 - ...... - 31999 - 32000 - 32001) - (3 - 32 - 33 - 34 - ...... - 31999 - 32000)
2N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001 - 3 + 32 + 33 + 34 + ..... + 31999 + 32000
2N = 32 + 32 - 3 - 32001
2N = 15 - 32001
N = \(\frac{15-3^{2001}}{2}\)