\(\sqrt{27.48\left(1-a\right)^2}\)  với a>1

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

a/ \(=\sqrt{36^2\left(1-a\right)^2}=36.\left|1-a\right|=36\left(a-1\right)=36a-36\)

b/ \(=\frac{1}{a-b}.a^2\left|a-b\right|=\frac{1}{a-b}.a^2\left(a-b\right)=a^2\)

c/ \(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}+\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\frac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

31 tháng 3 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .

3 tháng 4 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .


NV
19 tháng 9 2019

\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)

\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)

\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)

\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

1 tháng 9 2020

\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right).\left(\frac{\sqrt{\left(x-1\right)\left(x+1\right)}}{\sqrt{x+1}-\sqrt{x-1}}\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)

\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}=\frac{2\left(x+\sqrt{x^2-1}\right)}{2}=x+\sqrt{x^2-1}\)

Thế vào rồi tính nhé

\(\)

1 tháng 9 2020

Ta có: \(A=\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right):\left(\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\right)\)   \(\left(ĐK:x\ge1\right)\)

    \(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}.\sqrt{x-1}}\right).\left(\frac{\sqrt{x+1}.\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\right)\)

    \(\Leftrightarrow A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right).\left(\sqrt{x+1}-\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}\)

    \(\Leftrightarrow A=\frac{x+1-x+1}{x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}}\)

    \(\Leftrightarrow A=\frac{2}{2x+2\sqrt{x^2-1}}\)

Thay \(x=\frac{a^2+b^2}{2ab}\)vào phương trình \(A,\)ta có: 

          \(A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+b^2}{2ab}+1\right)\left(\frac{a^2+b^2}{2ab}-1\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+2ab+b^2}{2ab}\right)\left(\frac{a^2-2ab+b^2}{2ab}\right)}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\frac{\left(a+b\right)^2\left(a-b\right)^2}{\left(2ab\right)^2}}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\frac{\left(a+b\right)\left(a-b\right)}{2ab}}\)

   \(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2+a^2-b^2}{2ab}}\)

   \(\Leftrightarrow A=\frac{2ab}{2a^2}\)

   \(\Leftrightarrow A=\frac{b}{a}\)

Chúc bn hok tốt