\(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Em kiểm tra lại đề bài nhé!

20 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)

\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)

\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)

\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)


Điều kiện : a, b\(\ge0\)