\(M=\left(\frac{\sqrt{50a}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{20b}}{\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(=\left(\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right).\left(b-a\right)}{\sqrt{ab}.\left(b-a\right)}\right)\)

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}.\left(b-a\right)}\right)\)

11 tháng 8 2018

giải tiếp

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\right)\)

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{\sqrt{ab}.\left(a+b\right)}{\sqrt{ab}.\left(b-a\right)}\right)=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right).\left(\frac{b-a}{a+b}\right)\)

\(=\frac{b-a}{\sqrt{a}+\sqrt{b}}=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}\)

19 tháng 8 2019

\(A=\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}.\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

19 tháng 8 2019

\(B=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right).\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

15 tháng 6 2017

\(=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

\(=\frac{a-b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

\(=a-b\)

\(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right)\cdot\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\left[\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right]\)

\(=\frac{a-b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\left[\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right]\)

\(=\frac{a-b}{1}=a-b\)

6 tháng 6 2017

\(M=\left(\dfrac{\sqrt{50a}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{20b}}{\sqrt{b}-\sqrt{a}}\right).\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(=\left(\dfrac{\sqrt{50a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{20b}}{\sqrt{a}-\sqrt{b}}\right).\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=5\sqrt{2a}-2\sqrt{5b}\)

4 tháng 10 2015

\(=\left(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{b}-\sqrt{a}}\)

\(=\left(\frac{4\sqrt{ab}+\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\frac{4\sqrt{ab}+a-2\sqrt{ab}+b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=1\)

tick cho mình nha

4 tháng 10 2015

trục căn ở mẫu là đc :D