Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk nhầm nha câu đầu chỉ có 1 cái x-1 + x -2 thôi ko có cái đằng sau nhé ! giá trị tuyệt đối thì vẫn giữ nguyên !
\(M=\left|2x-\frac{3}{5}\right|-2x+7\) => \(\orbr{\begin{cases}M=2x-\frac{3}{5}-2x+7\\M=\frac{3}{5}-2x-2x+7\end{cases}}\)
=> \(\orbr{\begin{cases}M=\frac{32}{5}\\M=\frac{38}{5}-4x\end{cases}}\)
\(A=\frac{x\left|x-2\right|}{x^2+8x-20}=\frac{x\left|x-2\right|}{x^2-2x+10x-20}=\frac{x\left|x-2\right|}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left|x-2\right|}{\left(x+10\right)\left(x-2\right)}\)
Xét \(x-2\ge0\Leftrightarrow x\ge2\) ta có :
\(A=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}=\frac{x}{x+10}\)
Xét \(x-2< 0\Leftrightarrow x< 2\) ta có :
\(A=\frac{x\left(2-x\right)}{\left(x+10\right)\left(x-2\right)}=\frac{-x}{x+10}\)
a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A ≠ - 1
b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )
Vì a2 + a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d
Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau
⇒ Biểu thức A là phân số tối giản
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)
a: TH1: x<1
A=1-x+2-x=3-2x
TH2; 1<=x<2
A=x-1+2-x=1
TH3: x>=2
A=x-1+x-2=2x-3
b: TH1: x<5/2
B=5-2x+3-x+x-2=-2x+6
TH2: 5/2<=x<3
B=2x-5+3-x+x-2=2x-4
TH3: x>=3
B=x-3+2x-5+x-2=4x-10
c: TH1: x<-3/2
C=-2x-3-(5-x)+2x
=-2x-3-5+x+2x
=x-8
TH2: -3/2<=x<5
C=2x+3-(5-x)+2x=4x+3-5+x=5x-2
TH3: x>=5
C=2x+3-(x-5)+2x=4x+3-x+5=3x+8
a) 5A = 5 + 5^2 + 5^3 + 5^4 +...+ 5^51
=> 5A - A = 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
b) 3B = 3^100 - 3^99 -...- 3
=> 3B - B = 2B = 3^100 - 2.3^99 + 1
=> B = \(\frac{3^{100}-2\times3^{99}+1}{2}\)
a, 1+5+52+.....+550
=> 5(1+5+52+.....+550)=5+52+53.....+551
=>4(1+5+52+.....+550)=551-1
=>1+5+52+.....+550=(551-1):4
b,399-398-...-3-1
=399-(398+...+3+1)
=399-(399-1):2