\(\frac{a+\sqrt{ab}}{\sqrt{a}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

\(=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

6 tháng 9 2017

\(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\left(a+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{\left(a+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)

30 tháng 8 2021

\(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{ab}}{b}\)

17 tháng 11 2017

a, = \(\sqrt{a^2b^2.\left(1+\frac{1}{a^2b^2}\right)}\) = \(\sqrt{a^2b^2+1}\)

c, = \(\sqrt{\frac{a+ab}{b^4}}\) = \(\frac{\sqrt{a+ab}}{b^2}\)

k mk nha

17 tháng 11 2017

a, \(ab\sqrt{1+\frac{1}{a^2b^2}}\)

 \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab\sqrt{\frac{1+a^2b^2}{a^2b^2}}=\frac{ab}{\left|ab\right|}\sqrt{1+a^2b^2}\)

\(=\hept{\begin{cases}\sqrt{1+a^2b^2}ĐK:ab>0\\-\sqrt{1+a^2b^2}ĐKab< 0\end{cases}}\)

b, \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)

\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a+ab}{b^4}}=\frac{1}{b^2}\sqrt{a+ab}\)

31 tháng 3 2017

a) ĐS: .

b) ĐS: Nếu ab> 0 thì

Nếu ab

c) ĐS:

d)

Nhận xét. Nhận thấy rằng để sqrt{a} có nghĩa thì ageq 0. Do đó . Vì thế có thể phân tích tử thành nhân tử.


31 tháng 3 2017

a) ĐS: .

b) ĐS: Nếu ab> 0 thì

Nếu ab

c) ĐS:

d)

Nhận xét. Nhận thấy rằng để sqrt{a} có nghĩa thì ageq 0. Do đó . Vì thế có thể phân tích tử thành nhân tử.

9 tháng 11 2021

\(a,=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\\ b,=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

a: \(=-\sqrt{a}\)

b: \(=\sqrt{p}\)

17 tháng 8 2016

a/ \(\sqrt{8\left(\sqrt{2}-\sqrt{3}\right)^2}=2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{6}-4\)

b/ \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab.\sqrt{\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2.\frac{a^2b^2+1}{a^2b^2}}=\sqrt{a^2b^2+1}\)

c/ \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a}{b^3}\left(1+\frac{1}{b}\right)}=\frac{1}{b}.\sqrt{\frac{a}{b}\left(1+\frac{1}{b}\right)}\)

d/ \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
9 tháng 11 2021

\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)