\(\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)  và Q=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

Ta có: \(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

8 tháng 9 2020

cảm ơn bạn

7 tháng 12 2018

\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}=\) \(\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)

                                           \(=\frac{x+6\sqrt{x}+9}{3+\sqrt{x}}\)

                                            \(=\frac{\left(3+\sqrt{x}\right)^2}{3+\sqrt{x}}\)

                                             \(=3+\sqrt{x}\)

\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}\left(x\ge0\right)=\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)

\(=\frac{x+\sqrt{6}+9}{3+\sqrt{x}}=\frac{\left(\sqrt{x}+3\right)^2}{3+\sqrt{x}}=3+\sqrt{x}\left(x\ge0\right)\)

9 tháng 12 2019

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.

10 tháng 8 2015

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+9\right)}\right).\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\sqrt{x}-3}{2x-8\sqrt{x}+6}\)

Nếu đề ko sai thì đấy là kết quả