\(C=\left(a+b+c\right)\left(a+b-c\right)+\left(a+c+b\right)\left(a+c-b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

\(C=\left(a+b+c\right)\left(a+b-c\right)+\left(a+b+c\right)\left(a+c-b\right)+\left(a+b+c\right)\left(a+c-b\right)\)

\(=\left(a+b+c\right)\left[\left(a+b-c\right)+\left(a+c-b\right)+\left(a+c-b\right)\right]\)

\(=\left(a+b+c\right)\left(3a-b+c\right)\)

C=(a+b+c)(a+b-c+a+c-b+a+c-b)

C=(a+b+c)(3a-b+c)

C=a(3a-b+c)+b(3a-b+c)+c(3a-b+c)

C=3a2-ab+ac+3ab-b2+bc+3ac-bc+c2

C=3a2-b2+c2+2ab+4ac

C=3a2-b2+c2+2a(b+2c)

14 tháng 8 2018

\(\left(a-b+c\right)^2=\left[a+\left(-b\right)+c\right]^2\)

                             \(=a^2+\left(-b^2\right)+c^2+2.a.\left(-b\right)+2.\left(-b\right)\left(-c\right)+2.c.a\)

                              \(=a^2+b^2+c^2-2ab-2bc+2ca\)

15 tháng 10 2016

Đặt x = a+b , y = b+c , z = c+a

Thì biểu thức trên trở thành \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy-3xyz\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Từ đó thay a,b,c vào rồi rút gọn :)

14 tháng 6 2016

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

16 tháng 6 2016

a,Ta đặt : 

a-b-c=x ; b-c-a=y ; c-a-b=z

Ta có:

\(\text{x+y+z=a-b-c+b-c-a+c-a-b=-(a+b+c)}\)

\(\Rightarrow\left(x+y+z\right)^2=\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=\left(x+y+z\right)^2+x^2+y^2+z^2\)

\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=4\left(a^2+b^2+c^2\right)\)