Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(x^2\geq 0, \forall x\in\mathbb{R}\)
\(x^8=(x^4)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow G(x)=2+7x^2+x^8\geq 2+7.0+0>0, \forall x\in\mathbb{R}\)
Như vậy, $G(x)\neq 0$ với mọi $x\in\mathbb{R}$. Suy ra đa thức $G(x)$ không có nghiệm thực.
\(\text{Giải:}\)
\(\text{Ta có: 99.10^k-10^k+2=99.10^k -10^k . 100}\)
\(\text{A=-(10^k) mà: B=10^k nên: B lớn hơn A vậy: B lớn hơn A}\)
Ta có : A = 99 . 10k - 10k+2 = 99 . 10k - 10k . 102
= 10k . ( 99 - 100 ) = -1 . 10k
= -10k Vậy A < 0
Mà B = 10k ( k > 0 )
B > 0
Nên A < B
\(A=4^2.25^2+\dfrac{32.125}{2^3}.5^2\)
\(A=16.125+8.125.25\)
\(A=16.125+200.125\)
\(A=\left(16+200\right).125\)
\(A=216.125=27000\)
Ta có : |x-3| và |x-4| và |x-5| đều lớn hơn hoặc bằng 0
=> |x-3|+|x-4|+|x-5| = x-10 lớn hơn hoặc bằng 0
=> x - 10 lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 10
=> x - 3 + x - 4 + x - 5 = x - 10
=> 3x - 12 = x - 10
=> 3x - x = -10 + 12
=> 2x = 2
=> x = 1 ( loại )
Vậy x thuộc rỗng