Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
\(P=\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(b+c\right)\left(b+a\right)}+\frac{c^2-ab}{\left(c+a\right)\left(c+b\right)}\)
\(P=\frac{\left(a^2-bc\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{\left(b^2-ac\right)\left(c+a\right)}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{\left(c^2-ab\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)
\(P=\frac{a^2b+a^2c-b^2c-bc^2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{b^2a+b^2c-a^2c-ac^2}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{c^2a+c^2b-a^2b-b^2a}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)
\(P=\frac{0}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(P=0\)
Xét: \(f\left(x\right)=\frac{x^2-bc}{\left(x+b\right)\left(x+c\right)}+\frac{b^2-xc}{\left(b+c\right)\left(b+x\right)}+\frac{c^2-xb}{\left(c+x\right)\left(c+b\right)}\)
\(\Rightarrow f\left(a\right)=P\)
Ta có: \(f\left(b\right)=\frac{b^2-bc}{2b\left(b+c\right)}+\frac{b^2-bc}{2b\left(b+c\right)}+\frac{c^2-b^2}{\left(c+b\right)\left(c+b\right)}\)
\(\Rightarrow f\left(b\right)=\frac{2b\left(b-c\right)}{2b\left(b+c\right)}+\frac{\left(c-b\right)\left(c+b\right)}{\left(c+b\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-b}{c+b}=0\left(1\right)\)
Chứng minh tương tự ta cũng có: \(f\left(c\right)=0\left(2\right)\)
Từ (1) và (2) suy ra \(f\left(x\right)=0\left(\forall x\right)\Rightarrow f\left(a\right)=0\left(\forall x\right)\)
Vậy A =0
\(BT=\frac{a^2\left(b-c\right)+b^2c-b^2a+c^2a-c^2b}{a^4\left(b^2-c^2\right)+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^2c^2\left(b^2-c^2\right)-\left(b^4-c^4\right)a^2}\)
\(=\frac{\left(b-c\right)\left(a^2+bc-a\left(b+c\right)\right)}{\left(b^2-c^2\right)\left(a^4+b^2c^2-a^2\left(b^2+c^2\right)\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{\left(b+c\right)\left(a^2-b^2\right)\left(a^2-c^2\right)}\)
\(=\frac{1}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
= \(\frac{a^2\left(b-c\right)+b^2c-c^2b-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^4c^2-c^4b^2-a^2\left(a^4-b^4\right)}\)
= \(\frac{\left(b-c\right)\left(a-b\right)\left(c-a\right)}{\left(b^2-c^2\right)\left(a^2-b^2\right)\left(c^2-a^2\right)}\)
= \(\frac{1}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)