Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2.\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{\left(\sqrt{x-1}\sqrt{x+1}\right)^2}.\frac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{1+x}\sqrt{1-x}\)
\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{1+x}\sqrt{1-x}\)
\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{1+x}\sqrt{1-x}\)