Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Với \(m=1\Rightarrow x=\frac{1}{3}\)
Với \(m\ne1\Rightarrow\Delta=9+4\left(m-1\right)\ge0\)
\(\Rightarrow4m+5\ge0\Rightarrow m\ge-\frac{5}{4}\)
b/ Với \(m=4\Rightarrow x=\frac{1}{14}\)
Với \(m\ne4\)
\(\Delta'=\left(m+3\right)^2-\left(m-4\right)=m^2+5m+13=\left(m+\frac{5}{2}\right)^2+\frac{27}{4}>0\) \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!
1. ĐK x >1
pt \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)
\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)
\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)
\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)
Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\)
2. ĐK:...
\(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!
\(3.\) ĐK:...
Đặt: \(\left(x^2-3x-4\right)=a\)
\(\sqrt{x+7}=b\)
Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)
\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)
pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)
Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)
pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất .
Lời giải:
\(27^{mx^3-2x^2+3x-2}=\frac{1}{9^{-mx^2-x+2}}\Leftrightarrow 3^{3(xm^3-2x^2+3x-2)}=3^{2(mx^2+x-2)}\)
\(\Leftrightarrow 3(mx^3-2x^2+3x-2)=2(mx^2+x-2)\)
\(\Leftrightarrow 3mx^3-x^2(2m+6)+7x-2=0\)
\(\Leftrightarrow (3x-2)(mx^2-2x+1)=0\)
Để PT ban đầu có ba nghiệm phân biệt thì \(mx^2-2x+1=0\) phải có hai nghiệm phân biệt khác \(\frac{2}{3}\). Khi đó:
\(\left\{\begin{matrix} m\neq 0\\ m(\frac{2}{3})^2-\frac{4}{3}+1\neq 0\\ \Delta' =1-m>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m\neq 0\\ m\neq \frac{3}{4}\\ m<1\end{matrix}\right.\)
Đáp án D chính xác nhất, nhưng chưa quét hết nghiệm.
Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\) ta được:
\(x^2+\dfrac{1}{x^2}+3x+\dfrac{3}{x}+m=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)+m-2=0\) (1)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2-tx+1=0\) (2)
(2) có 2 nghiệm pb khi và chỉ khi:
\(\Delta=t^2-4>0\Rightarrow\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)
Khi đó (1) trở thành:
\(t^2+3t+m-2=0\) (3)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (3) có 2 nghiệm pb thỏa mãn \(\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)
(3) \(\Leftrightarrow t^2+3t-2=-m\)
Đặt \(f\left(t\right)=t^2+3t-2\)
\(f\left(-2\right)=-4\) ; \(f\left(2\right)=8\)
Đồ thị hàm \(f\left(t\right)\):
Từ đồ thị ta thấy \(y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm đều nằm ngoài \(\left[-2;2\right]\) khi và chỉ khi:
\(\left[{}\begin{matrix}-\dfrac{17}{4}< -m< -4\\-m>8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4< m< \dfrac{17}{4}\\m< -8\end{matrix}\right.\)
thầy cho em hỏi làm mấy dạng tìm điều kiện này thạo thì nên học qua tư liệu nào ? Thầy có thể cho e một số file chuyên đề về mấy dạng này đc không?