Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z thì \(3x^2-x+1⋮3x+2\)
\(3x^2+2x-3x-2+3⋮3x+2\)
\(x\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\left(3x+2\right)\left(x-1\right)+3⋮3x+2\)
Mà \(\left(3x+2\right)\left(x-1\right)⋮3x+2\)
\(\Rightarrow3⋮3x+2\)
\(\Rightarrow3x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng :
3x+2 | 1 | -1 | 3 | -3 |
x | -1/3 | -1 | 1/3 | -5/3 |
Mà x thuộc Z => x = -1
Vậy x = -1
\(A=\dfrac{3x^2+2x-3x+1}{3x+2}=\dfrac{3x^2+2x-3x-2+3}{3x+2}\)
\(A=\dfrac{x\left(3x+2\right)-\left(3x+2\right)+3}{3x+2}=x-1+\dfrac{3}{3x+2}\in Z\)
\(\Rightarrow3x+2\inƯ\left(3\right)\)
Xét ước thôi
a) \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)
\(\Rightarrow A=\dfrac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\dfrac{x^2}{3\left(9-x^2\right)}+\dfrac{1}{x+3}\right)\)
\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\left(\dfrac{x^2}{3.\left(3-x\right).\left(3+x\right)}+\dfrac{1}{x+3}\right)\)
\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+3.\left(3-x\right)}{3.\left(3-x\right).\left(3+x\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+9-3x}{3.\left(3-x\right).\left(3+x\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}.\dfrac{3.\left(3x-x\right).\left(3+x\right)}{x^2+9-3x}\)
\(\Rightarrow A=\dfrac{1}{x.\left(x-3\right)}.\left(-\left(x-3\right)\right).\left(3+x\right)\)
\(\Rightarrow A=\dfrac{1}{x}.\left(-1\right).\left(3+x\right)\)
\(\Rightarrow A=-\dfrac{1}{x}.\left(3+x\right)\)
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
ĐKXĐ x khác 3,-1/3
\(A=\frac{3x^3-9x^2-5x^2+15x-12x+36}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(3x^2-5x-12\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{3x^2-5x-12}{3x^2-10x+3}=\frac{\left(x-3\right)\left(3x+4\right)}{\left(x-3\right)\left(3x-1\right)}\)
\(=\frac{3x+4}{3x-1}\)
b,với ĐKXĐ ta có \(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=\frac{-4}{3}\left(tm\right)\)
c,\(\frac{3x+4}{3x-1}=\frac{3x-1+5}{3x-1}=1+\frac{5}{3x-1}\)
để A thuộc z thì \(\frac{5}{3x-1}\in Z\Rightarrow3x-1\inƯ\left(5\right)\) đến đây bạn tìm ước của 5 rồi tự giải nhé
a: \(M=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x^2\left(x-3\right)}{x^3\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{x}{x-3}\)
\(=\dfrac{4x^2}{x-3}\)
b: Để M là số nguyên thì \(4x^2⋮x-3\)
\(\Leftrightarrow4x^2-36+36⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(x\in\left\{4;5;1;0;7;-1;9;-3;12;-6;15;-9;21;-12;39;-33\right\}\)