Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.3046;4036;4603;6304;abcde\)
\(b.x2345;6714;6517;6471;6174\)
\(HocTot!!!\)
\(@VR\)
Mk học dạng này lâu zùi nên ko giúp đc!
sorry nha =_="
chúc bạn sớm nhận đc câu trả lời hay và đúng nhất =))
Mình cũng không biết
Xin lỗi bạn nhé
Bởi vì mình chưa học dạng này
Gọi 4 số tự nhiên liên tiếp từ nhỏ đến lớn là a, b, c, d.
Số thứ nhất cu Tí viết là abcd, số thứ hai cu Tí viết là dcba.
Ta xét các chữ số hàng nghìn của ba số có tổng là 12300: a là số lớn hơn 1 vì nếu a = 1 thì d = 4,
khi đó số thứ ba có chữ số hàng nghìn lớn nhất là 4 và tổng của ba chữ số này lớn nhất là: 1 + 4 + 4 = 9 < 12;
như vậy tổng của ba số nhỏ hơn 12300.
a là số nhỏ hơn 5 vì nếu a = 5 thì d = 8 và a + d = 13 > 12;
như vậy tổng của ba số lớn hơn 12300. a chỉ có thể nhận 3 giá trị là 2, 3, 4.
- Nếu a = 2 thì số thứ nhất là 2345, số thứ hai là 5432.
Số thứ ba là: 12300 - (2345 + 5432) = 4523 (đúng, vì số này có các chữ số là 2, 3, 4, 5).
- Nếu a = 3 thì số thứ nhất là 3456, số thứ hai là 6543.
Số thứ ba là : 12300 - (3456 + 6543) = 2301 (loại, vì số này có các chữ số khác với 3, 4, 5, 6).
- Nếu a = 4 thì số thứ nhất là 4567, số thứ hai là 7654. Số thứ ba là: 12300 - (4567 + 7654) = 79 (loại).
Vậy các số mà cu Tí đã viết là : 2345, 5432, 4523
Bài giải : Gọi 4 số tự nhiên liên tiếp từ nhỏ đến lớn là a, b, c, d.
Số thứ nhất cu Tí viết là abcd, số thứ hai cu Tí viết là dcba.
Ta xét các chữ số hàng nghìn của ba số có tổng là 12300:
a là số lớn hơn 1 vì nếu a = 1 thì d = 4, khi đó số thứ ba có chữ số hàng nghìn lớn
nhất là 4 và tổng của ba chữ số này lớn nhất là:
1 + 4 + 4 = 9 < 12; như vậy tổng của ba số nhỏ hơn 12300.
a là số nhỏ hơn 5 vì nếu a = 5 thì d = 8 và a + d = 13 > 12; như vậy tổng của ba số
lớn hơn 12300.
a chỉ có thể nhận 3 giá trị là 2, 3, 4.
- Nếu a = 2 thì số thứ nhất là 2345, số thứ hai là 5432. Số thứ ba là: 12300 -
(2345 + 5432) = 4523 (đúng, vì số này có các chữ số là 2, 3, 4, 5).
- Nếu a = 3 thì số thứ nhất là 3456, số thứ hai là 6543.
Số thứ ba là :
12300 - (3456 + 6543) = 2301 (loại, vì số này có các chữ số khác với 3, 4, 5, 6).
- Nếu a = 4 thì số thứ nhất là 4567, số thứ hai là 7654. Số thứ ba là:
12300 - (4567 + 7654) = 79 (loại).
Vậy các số mà cu Tí đã viết là : 2345, 5432, 4523.
a) Ta so sánh phần bù :
\(\rightarrow\)\(\frac{1}{1991}< \frac{1}{1992}< \frac{1}{1993}\)\(< \frac{1}{1994}< \frac{1}{1995}\)
Vì phần bù càng lớn nên phần số càng nhỏ
\(\Rightarrow\)Thứ tự tăng dần là : \(\frac{1996}{1995};\frac{1995}{1994};\frac{1994}{1993}\)\(;\frac{1993}{1992};\frac{1992}{1991}\)
b) Làm tương tự câu a
c) Ta so sánh phần bù :
\(\rightarrow\)\(\frac{1}{8}< \frac{1}{18}< \frac{1}{58}< \frac{1}{98}\)
Vì phần bù lớn hơn thì phân số nhỏ hơn
\(\Rightarrow\)Thứ tự giảm dần là : \(\frac{97}{98};\frac{57}{58};\frac{17}{18};\frac{7}{8}\)
a) Thứ tự tăng dần: 1, 23; 1,234; 12,3; 12,34; 13,4; 123,4
b) Thứ tự giảm dần: 2,1; 1,2; 1,12; 1,1; 0,12; 0,1; 0,01
a) xếp đúng : 1,23; 1,234; 12,3; 12,34; 13,4; 123,4
b) xếp đúng : 2,1; 1,12; 1,2; 1,1; 0,12; 0,1; 0,01
Bài giải : Gọi 4 số tự nhiên liên tiếp từ nhỏ đến lớn là a, b, c, d.
Số thứ nhất cu Tí viết là abcd, số thứ hai cu Tí viết là dcba.
Ta xét các chữ số hàng nghìn của ba số có tổng là 12300:
a là số lớn hơn 1 vì nếu a = 1 thì d = 4, khi đó số thứ ba có chữ số hàng nghìn lớn
nhất là 4 và tổng của ba chữ số này lớn nhất là:
1 + 4 + 4 = 9 < 12; như vậy tổng của ba số nhỏ hơn 12300.
a là số nhỏ hơn 5 vì nếu a = 5 thì d = 8 và a + d = 13 > 12; như vậy tổng của ba số
lớn hơn 12300.
a chỉ có thể nhận 3 giá trị là 2, 3, 4.
- Nếu a = 2 thì số thứ nhất là 2345, số thứ hai là 5432. Số thứ ba là: 12300 -
(2345 + 5432) = 4523 (đúng, vì số này có các chữ số là 2, 3, 4, 5).
- Nếu a = 3 thì số thứ nhất là 3456, số thứ hai là 6543.
Số thứ ba là :
12300 - (3456 + 6543) = 2301 (loại, vì số này có các chữ số khác với 3, 4, 5, 6).
- Nếu a = 4 thì số thứ nhất là 4567, số thứ hai là 7654. Số thứ ba là:
12300 - (4567 + 7654) = 79 (loại).
Vậy các số mà cu Tí đã viết là : 2345, 5432, 4523.
\(a.3046;4036;4603;6304;abcde\)
\(b.x2345;6714;6517;6471;6174\)
\(HocTot!!!\)
\(@VR\)