Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(5^{2x}-24.5^{x-1}-1=0\Leftrightarrow5^{2x}-\frac{24}{5}.5^x-1=0\)
Đặt \(t=5^x,\left(t>0\right)\)
a)Phương trở thành : \(\Leftrightarrow t^2-\frac{24}{5}.t-1=0\left[\begin{matrix}t=5\\t=-\frac{1}{5}\left(l\right)\end{matrix}\right.\)
Với \(t=5\) ta có \(x=1\)
Vậy phương trình có nghiệm là : \(x=1\) và \(x=-1\)
ĐK: \(x>1\)
b)Ta có phương trình :\(\Leftrightarrow log_{\frac{1}{2}}+log_{\frac{1}{2}}\left(x-1\right)+log_26=0\Leftrightarrow log_{\frac{1}{2}}x\left(x-1\right)+log_26=0\)
\(\Leftrightarrow log_2x\left(x-1\right)=log_26\)
\(\Leftrightarrow x\left(x-1\right)=6\Leftrightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Đôi chiếu điều kiện ta thấy phương trình có nghiệm \(x=3\)
a.
Pt hoành độ giao điểm: \(m-x=\frac{x-1}{x+1}\)
\(\Leftrightarrow\left(m-x\right)\left(x+1\right)=x-1\)
\(\Leftrightarrow x^2-\left(m-2\right)x-m-1=0\left(1\right)\)
Đường thẳng cắt đồ thị khi và chỉ khi (1) có nghiệm
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+4\left(m+1\right)\ge0\)
\(\Leftrightarrow m^2+8\ge0\) (luôn đúng với mọi m)
Đáp án C đúng
b.
\(y'=3x^2-6mx\)
Hàm số có 2 cực trị \(\Leftrightarrow m\ne0\)
Tiến hành chia y cho y' là lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng: \(y=-2m^2x+3m^3\Leftrightarrow2m^2x+y-3m^3=0\)
Đường thẳng đã cho song song d khi và chỉ khi:
\(\left\{{}\begin{matrix}2m^2=2\\-3m^3\ne3\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Đáp án A đúng
\(I=\int\limits^1_0\left(\frac{1}{x+1}-\frac{1}{3x+2}\right)dx=\left[ln\left|x+1\right|-\frac{1}{3}ln\left|3x+2\right|\right]|^1_0=\frac{4}{3}ln2-\frac{1}{3}ln5\)
\(w=i\left(1+\frac{1}{3}i\right)+3\left(1+\frac{1}{3}i\right)=\frac{8}{3}+2i\)
\(\Rightarrow\left|z\right|=\sqrt{\left(\frac{8}{3}\right)^2+2^2}=\frac{10}{3}\)
=2
Trần Lê Việt Hoàng
= 30