K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

22 tháng 7 2018

\(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

mk chỉnh lại đề

\(x^2-2xy+y^2-z^2+2zt+t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

mk chỉnh lại đề:

\(ax^2+cx^2-ay+ay^2-cy+cy^2\)

\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)

\(=\left(a+c\right)\left(x^2-y+y^2\right)\)

\(ax^2+ay^2-bx^2-by^2+b-a\)

\(=x^2\left(a-b\right)+y^2\left(a-b\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+y^2-1\right)\)

\(ac^2-ad-bc^2+cd+bd-c^3\)

\(=a\left(c^2-d\right)-b\left(c^2-d\right)-c\left(c^2-d\right)\)

\(=\left(c^2-d\right)\left(a-b-c\right)\)

22 tháng 7 2018

trả lời giùm mình với

28 tháng 7 2017

1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)

3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)

4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)

\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)

\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)

\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)

\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

5 tháng 10 2015

a) 

5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)

b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)

c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz

= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)

=(y+z)(x^2+x+yz)

25 tháng 7 2017

Bài 1:

\(a,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)

\(b,25-4x^2-4xy-y^2=25-\left(2x+y\right)^2\)

\(=\left(5-2x-y\right)\left(5+2x+y\right)\)

\(c,x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\) \(d,x^2-4xy+4y^2-z^2+4tz-4t^2\)

\(=\left(x-2y\right)^2-\left(x-2t\right)^2=\left(x-2y-x+2t\right)\left(x-2y+x-2t\right)\)Bài 3,

\(a,x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(b,x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Rightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)\(c,x^3-5x^2+x-5=0\)

\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)

Ta có: \(x^2+1\ge1\Rightarrow x-5=0\Rightarrow x=5\)

\(d,x^4-2x^2+10x^3-20=0\)

\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)x\left(x^2+1\right)=0\)

ta có:

\(x^2+1\ge1\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

24 tháng 7 2016

1)   \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)

2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)

3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)

\(=\left(x+1\right)\left(a-b+c\right)\)

6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

26 tháng 6 2021

1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)

2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)

3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)

4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)

5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x  + y + 1)

6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)

26 tháng 6 2021

Trả lời:

1, x2 - x - y2 - y

= ( x2 - y2 ) - ( x + y )

= ( x - y ) ( x + y ) - ( x + y )

= ( x + y ) ( x - y - 1 )

2, x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - x2

= ( x - y - z ) ( x - y + z )

3, 5x - 5y + ax - ay

= ( 5x + ax ) - ( 5y + ay )

= x ( 5 + a ) - y ( 5 + a )

= ( 5 + a ) ( x - y )

= ( 5 + a ) ( x - y )

4, a3 - a2x - ay + xy

= ( a3 - a2x ) - ( ay - xy )

= a2 ( a - x ) - y ( a - x )

= ( a - x ) ( a2 - y )

5, 4x2 - y2 + 4x + 1

= ( 4x2 + 4x + 1 ) - y2 

= ( 2x + 1 )2 - y2

= ( 2x + 1 - y ) ( 2x + 1 + y )

6, x3 - x + y3 - y

= ( x3 + y3 ) - ( x + y )

= ( x + y ) ( x2 - xy + y ) - ( x + y )

= ( x + y ) ( x2 - xy + y - 1 )