Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) \(4x^2-8x+4-9\left(x-y\right)^2\)
\(=4\left(x^2-2x+1\right)-9\left(x-y\right)^2\)
\(=\left[2\left(x-1\right)\right]^2-\left[3\left(x-y\right)\right]^2\)
\(=\left(2x-2+3x-3y\right)\left(2x-2-3x+3y\right)\)
\(=\left(5x-3y-2\right)\left(3y-x-2\right)\)
b) \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(a)\) \(3x^2-6x=3x\left(x-2\right)\)
\(b)\) \(9x^3-9x^2y-4x+4y\)
\(=9x^2.\left(x-y\right)-4\left(x-y\right)\)
\(=\left(9x^2-4\right)\left(x-y\right)\)
\(=[\left(3x\right)^2-2^2]\left(x-y\right)\)
\(=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
\(c)\) \(x^3-2x^2-8x\)
\(=x\left(x^2-2x-8\right)\)
\(=x\left(x+2\right)\left(x-4\right)\)
a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )
b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2
c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )
d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )
e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )
f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )
g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )
a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)
c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)
\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)
e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)
\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)
\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)
g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)
\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)
\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)
bằng phương pháp nào zậy bn????
547675675675678768768789980957457346242645657
4x2 -6x= 2x(2x-3)
b) 3x3 -6x2y -24xy + 12x2 = \(3x\left(x^2-2xy-8y+4x\right)\)
c) x2 -25 + y2 + 2xy\(=x^2+2xy+y^2-25\)\(=\left(x+y\right)^2-5^2\)
=>\(\left(x+y+5\right)\left(x+y-5\right)\)
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c)\(x^8+98x^4+1\)
\(=\left(x^8+2x^4+1\right)+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
d)\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)
\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)
1.
\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.
2.
\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)
3.
\(x^2-10x+2\): không p. tích được thành nhân tử.
4.
\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)
5.
\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)
\(=(2x-3y)(4x^2+6xy+9y^2)\)
6.
\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)
\(=(x-1)(x+6y+1)\)
7.
\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)
8.
\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)
\(=-(x+1)(37+x^2+11x)\)
9.
\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)
10.
\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)
\(=x^6(3-2x)^2\)
X^2n - 4 X^n.Y^n-1 + 4Y^2(n-1)
(X ^ n)^2 - 2. X^n.2. Y^n-1 + (2Y ^n-1)^2
= ( X ^N - 2Y^n-1 ) ^2