K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

(x+1)(x+2)(x+3)(x+4)-360

=(x2+5x+4)(x2+5x+6)-360

Đặt x2+5x+4=t

Ta có : t(t+2)-360=t2+2t-360=(t2+2t+1)-361=(x+1)2-192=(t+20)(t-18)

= (x2+5x+24)(x2+5x-14)

= (x2+5x+24)(x-2)(x+7)

13 tháng 8 2019

\(a,x^2+9x+20=x^2+4x+5x+20.\)

\(=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

\(b,x^4-5x^2+4=x^4-x^2-4x^2+4\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)=\left(x^2-1\right)\left(x^2-4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

\(c,x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2-2\right)-\left(2x\right)^2=\left(x^2-2x-2\right)\left(x^2+2x-2\right)\)

\(d,x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)

\(\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)\left(x^2+3x\right)+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

6 tháng 11 2016

1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)

2. C. \(\left(x-y\right)\left(x-y-3\right)\)

3. D. \(\left(x-2\right)\left(x+1\right)\)

4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)

5. D. \(3\left(x-2y\right)\)

6 tháng 11 2016

1. Trong các kết quả sau kết quả nào sai

A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)

B. x(y-1) +3(y-1)= -(1-y)(x+3)

C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)

2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:

A. (x+y)(x-y+3)

B. (x-y)(2x-2y+3)

C. (x-y)(x-y-3)

D. Cả 3 câu đều sai

3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử

A. (x-2)x

B. (x-2)^2.x

C. x(2x-4)

D. (x-2)(x+1)

4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử

A. (xy-2y)(5x^2-15x^2)

B. y(x-2)(5x^2-15x^2)

C. y(x-2)5x(x-3)

D. (xy-2y)5x(x-3)

5. Kết quả phân tích đa thức 3x-6y thành nhân tử là

A. 3(x-6y)

B. 3(3x-y)

C. 3(3x-2y)

D. 3(x-2y)

22 tháng 7 2015

(x+1).(x+2).(x+3).(x+4)-4

=(x+1)(x+4)(x+2)(x+3)-4

=(x2+5x+4)(x2+5x+6)-4

Đặt t=x2+5x+4 ta được:

t.(t+2)-4

=t2+2t-4

Vẫn sai đề

1 tháng 9 2018

Cái này chưa học bt làm mấy câu

b. x^2 + 2x - 3

= x^2 + 3x - x - 3

= x ( x - 1 ) + 3 ( x - 1 )

= ( x + 3 ) ( x - 1 )

1 tháng 9 2018

\(4x^2-3x-4\)

\(=\left(2x\right)^2-2.2x.\frac{3}{4}+\frac{9}{16}-\frac{73}{16}\)

\(=\left(2x-\frac{3}{4}\right)^2-\frac{73}{16}\)

\(=\left(2x-\frac{3}{4}\right)^2-\left(\frac{\sqrt{73}}{4}\right)^2\)

\(=\left(2x-\frac{3}{4}-\frac{\sqrt{73}}{4}\right)\left(2x-\frac{3}{4}+\frac{\sqrt{73}}{4}\right)\)

\(=\left(2x-\frac{3+\sqrt{73}}{4}\right)\left(2x+\frac{-3+\sqrt{73}}{4}\right)\)

\(x^2+2x-3\)

\(=x^2-x+3x-3\)

\(=x\left(x-1\right)+3\left(x-1\right)\)

\(=\)\(\left(x+3\right)\left(x-1\right)\)

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) \(\left(1\right)\)

đặt \(x^2+5x+5=t\)

\(\left(1\right)\)\(=\) \(\left(t-1\right)\left(t+1\right)-24\)

            \(=t^2-1-24\)

            \(=t^2-25\)

            \(=\left(t-5\right)\left(t+5\right)\)

hay \(\left(1\right)=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

               \(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

                \(=x\left(x+5\right)\left(x^2+5x+10\right)\)

học tốt

3 tháng 9 2016

=[(x+1)(x+4)][(x+2)(x+3)]+8=(x2+5x+4)(x2+5x+6)+8

Đặt x2+5x+4=t

Ta có : t(t+2)+8=t2+2t-8=(t-2)(t+4)

k mk nha

2 tháng 9 2018

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

30 tháng 7 2015

= (x4 + 2x2 + 1) + (2x4 + x+ 2) - (x2 + x+1)2

= [(x+ 1) - (x2 + x+1)2  ] + (2x4 + x+ 2) 

= (x+ 1 + x2 + x + 1). (x+ 1 - x2 - x- 1)  + (2x4 + x+ 2) 

= (2x+ x + 2) (-x) + (2x4 + x+ 2)  = -2x3 - x- 2x + 2x4 + x+ 2 = -2x3 + 2x4 - 2x + 2

= -2x3. (1 - x) + 2.(1 - x) = (1- x). (-2x3 + 2) = 2.(1 - x)(1- x3) = 2. (1- x). (1- x) .(1 + x + x2) = 2.(1-x)2. (1 + x + x2)

27 tháng 7 2017

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+5\right)^2\)