K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

\(a,x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

2 tháng 7 2019

a) a4 + a2 - 2

a4 + 2a2 - a2 - 2

a2.( a2 + 2 ) - ( a2 + 2 )

( a2 - 1 ).( a2 + 2 )

( a + 1 ).( a - 1 ).( a2 +2 )

b) x4 + 4x2 - 5

x4 + 5x2 - x2 - 5

x2.( x2 + 5 ) - ( x2 + 5 )

( x2 - 1 ).( x2 + 5 )

( x + 1 ).( x - 1 ).( x2 + 5 )

c) x3 - 19x - 30

x3 + 2x2 - 2x2 + 4x - 15x - 30

x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )

( x + 2 ).( x2 - 2x - 15 )

d) x3 - 7x - 6

x3 - 3x2 + 3x2 - 9x + 2x - 6

x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )

( x - 3 ).( x2 + 3x +2 )

( x - 3 ).( x2 + 2x + x + 2 )

( x - 3 ).( x.( x + 2 ) + ( x + 2 )

( x + 1 ).( x + 2 ).( x - 3 )

e) x3 - 5x2 - 14x

x3 - 7x2 + 2x2 - 14x

x2.( x - 7 ) + 2x.( x - 7 )

( x - 7 ).( x2 + 2x )

x.( x + 2 ).( x - 7 )

25 tháng 7 2015

\(a,x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

\(b,x^4+x^3+x+1=x^3.\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right).\left(x^3+1\right)=\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

\(c,x^3-19x-30=x^3-25x+6x-30\)

\(=x.\left(x^2-25\right)+6.\left(x-5\right)\)

\(=x.\left(x-5\right)\left(x+5\right)+6.\left(x-5\right)\)

\(=\left(x-5\right).\left[x\left(x+5\right)+6\right]\)

\(=\left(x-5\right).\left(x^2+5x+6\right)\)

\(=\left(x-5\right).\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x.\left(x+2\right)+3.\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

15 tháng 4 2020

a)9(2x+1)2 - 4(x-1) 

<=>33(2x+1)2-22(x+1)2

<=>(3(2x+1)) 2-(2(x+1))2

<=>(6x+3)2-(2x+1)2

<=>((6x+3)-(2x+1)) ((6x+3)+(2x+1))

<=>(6x+3-2x-1)(6x+3+2x+1)

<=.>(4x+2)(8x+4)

b) x- 19x- 30

<=>x3-25x+6x-30  

<=.>x(x2-52)+6(x-5)

<=>x(x+5)(x-5)+6(x-5)

<=>(x-5) (x2+5x+6)

<=>(x-5) (x2+2x+3x+6)

<=>(x-5) ( x(x+2)+3(x+2))

<=>(x-5) (x+2)(x+3)

c) x4+ x+1

<=>x4+x2+1

<=>x4−x+x2+x+1

<=>x(x3−1)+(x2+x+1)

<=>x(x−1)(x2+x+1)+(x2+x+1)

<=>(x2+x+1)[x(x−1)+1]

<=>(x2+x+1)(x2−x+1)

câu d mình chịu :(((

2 tháng 9 2018

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

27 tháng 5 2016

a) 4x*(x+y)*(x+y+z)*(x+z)+y^2+z^2

=4*x*y*z^2+4*x^2*z^2+z^2+4*x*y^2*z+12*x^2*y*z+8*x^3*z+4*x^2*y^2+y^2+8*x^3*y+4*x^4

b) x^3-19x-30

=(x-5)*(x+2)*(x+3)

24 tháng 8 2017

\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

\(c.x^3-19x-30=x^3-25x+6x-30\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

24 tháng 8 2017

tí nữa giải cho