Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 + 64 = (x4 + 16x2 + 64) - 16x2 = (x2 + 8)2 - (4x)2 = (x2 - 4x + 8).(x2 + 4x + 8)
Ta có
x4 + 64
= (x4 + 16x2 + 64) - 16x2
= (x2 + 8)2 - (4x)2
= (x2 - 4x + 8).(x2 + 4x + 8)
hok tốt
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
k nhoa
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
k nhoa
\(x^4+64\)
\(=\left(x^2\right)^2+8^2+2x^2.8-2x^2.8\)
\(=\left(x^2+8\right)^2-\left(4x^2\right)\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
câu hỏi hay......nhưng tui xin nhường cho các bn khác
Hãy tích đúng cho tui nha
THANKS
Kết quả cuối cùng :
(x+2)•(x2-2x+4)•(2-x)•(x2+2x+4)
Định dạng lại đầu vào:
Thay đổi được thực hiện cho đầu vào của bạn sẽ không ảnh hưởng đến giải pháp:
(1): "x6" đã được thay thế bởi "x^6".
Giải pháp từng bước :
Bậc thang 1 :
Cố gắng tính đến sự khác biệt của hình vuông:
1.1 Bao thanh toán: 64-x6
Lý thuyết: Một sự khác biệt của hai hình vuông hoàn hảo, A2 - B2 có thể được tính vào (A+B) • (A-B)
Bằng chứng : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Chú thích : AB = BA là tính chất giao hoán của phép nhân.
Chú thích : - AB + AB bằng không và do đó được loại bỏ khỏi biểu thức.
Kiểm tra : 64 là hình vuông của 8
Kiểm tra : x6 là hình vuông của x3
Hệ số là: (8 + x3) • (8 - x3)
64-x^6=2^6-x^6=(2-x)(2^5+2^4x+2^3x^2+2^2x^3+2x^4+x^5)=(2-x)(x^5+2x^4+8x^3+16x^2+32)
x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)