Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
^2 + 4xy - 16 + 4y^2
= x^2 + 4xy + 4y^2 - 4^2
= (x + 2y)^2 - 4^2
= (x + 2y - 4)(x + 2y + 4)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
a) \(x^3y^3+x^2y^2+4\)
\(=x^3y^3-x^2y^2+2x^2y^2-2xy+2xy+4\)
\(=\left(x^3y^3-x^2y^2+2xy\right)+\left(2x^2y^2-2xy+4\right)\)
\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
b) \(x^3+3x^2y-9xy^2+5y^3\)
\(=x^3+5x^2y-2x^2y-10xy^2+xy^2+5y^3\)
\(=\left(5y^3-10xy^2+5x^2y\right)+\left(xy^2-2x^2y+x^3\right)\)
\(=5y\left(y^2-2xy+x^2\right)+x\left(y^2-2xy+x^2\right)\)
\(=\left(5y+x\right)\left(y^2-2xy+x^2\right)\)
\(=\left(5y+x\right)\left(y-x\right)^2\)
\(x^3y^3+x^2y^2+4=x^3y^3+2x^2y^2-x^2y^2+4\)
\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)=x^2y^2\left(xy+2\right)-\left(xy-2\right)\left(xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
Phân tích đa thức thành nhân tử( pp tách hạng tử):
x3y3+x2y2+4
Câu trả lời của mik giống bạn Nguyễn Lê Tiến Huy .
\(x^4y-3x^3y^2+3x^2y^3+xy^4=xy\left(x^3-3x^2y+3xy^2+y^3\right)\)
1. = (3x)3 - (ab)3
= (3x - ab)[(3x)2 + 3x . ab + ab2)
= (3x - ab)(9x2 + 3xab + ab2)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
Ta có: \(x^3y^3+x^2y^2+4=x^3y^3+8+x^2y^2-4=\left(xy+2\right)\left(x^2y^2-2xy+4\right)+\left(xy+2\right)\left(xy-2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)