\(\left(x-18\right)\)\(\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

a) (x2-4x+3)(x2-10x+24)+8=((x2-x)-(3x-3))((x2-6x)-(4x-24))+8

=(x(x-1)-3(x-1))(x(x-6)-4(x-6))+8=(x-1)(x-3)(x-4)(x-6)+8=((x-1)(x-6))(x-3)(x-4))+8

=(x2-7x+6)(x2-7x+12)+8

Đặt x2-7x+6=a

Ta có : a(a+6)+8=a2+6a+8=(a+2)(a+4)=(x2-7x+8)(x2-7x+10)=(x2-7x+8)(x-5)(x-2)

b) Tương tự như câu a kết quả là (x-3)(x3+9x2+21x+9)

c) x4+x3+6x2+3x+9=(x4+x3+3x2)+(3x2+3x+9)=x2(x2+x+3)+3(x2+x+3)=(x2+x+3)(x2+2)

13 tháng 5 2018

mk lm tiếp câu b

  BÀI LÀM

b)  \(P\left(x\right)=x^5-x\)

 \(=x\left(x^4-1\right)\)

\(=x\left(x^2-1\right)\left(x^2+1\right)\)

 \(=\left(x-1\right)\left(x+1\right)x\left(x^2+1\right)\)

 \(=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)

\(=\left(x-1\right)x\left(x+1\right)\left(x^2-4\right)+5\left(x-1\right)x\left(x+1\right)\)

\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)

Ta thấy    \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)là tích của 5 số nguyên liên tiếp  (do x nguyên)  nên chia hết cho 5

               \(5\left(x-1\right)x\left(x+1\right)\) chia hết cho 5

Vậy   \(P\left(x\right)⋮5\)nếu  x nguyên

13 tháng 5 2018

a , \(P\left(x\right)-Q\left(x\right)=x^5-x-\left(x^2-4\right)\left(x^2-1\right)x\)

\(=x^5-x-\left(x^5-5x^3+4x\right)=x^5-x-x^5+5x^3-4x\)

\(=5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)

21 tháng 10 2019

a) -3x^2+x+4

=-3x^2-3x+4x+4

=-3x.(x+1)+4.(x+1)

=(x+1).(4-3x)

21 tháng 10 2019

b) \(x^3-3x^2+2\)

\(=x^3-2x^2-x^2+2\)

\(=x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\)

\(=\left(x^2-x-2\right)\left(x-2\right)\)

c) \(x^4y^4+64\)

\(=x^4y^4+16x^2+64-16x^2\)

\(=\left(x^2y^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2y^2-4x+8\right)\left(x^2y^2+4x+8\right)\)

d) \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left[x^6-x^4-x+x^3-1\right]\)

22 tháng 12 2018

A.(x+2y).(x+2y-1) = x^2 +4xy + 4y^2 - x - 2y

B. (x-2y).(x+2y-1) = x^2 - x - 4y^2 + 2y

C. (x-2y).(x-2y+1) = x^2 - 4xy + 4y^2 + x - 2y

D.(x+2y).(x-2y) = x^2 - 4y^2

=>....

2 tháng 8 2016

a)(x+y)2-(x-y)2

=(x+y-x+y)(x+y+x-y)

=2y.2x=4xy

b)(3x+1)2-(x+1)2

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

=4x(2x+1)

c) x3+y3+z3-3xyz

= (x+y)3- 3xy(x+y) +z3-3xyz

=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-xz-yz)

4 tháng 8 2016

Phân tích đa thức sau thành nhân tử :

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b) \(x^3+y^3+z^3-3xyz\)

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)