Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .
a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).
Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).
Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
b ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).
Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .
Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
Chúc bạn học tốt
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
Biết câu nào làm câu đấy thoy nha :))
3. \(x^4y^4+4\)
\(=\left(x^2y^2\right)^2+2\cdot x^2y^2\cdot2+2^2-2\cdot x^2y^2\cdot2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)
4. \(x^4+4y^4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2y^2+\left(2y^2\right)^2-2\cdot x^2\cdot2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
2. \(x^4+x^2+1\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot1+1^2-2x^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b )
\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
c )
\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)
a
\(x^2-3x-2=\left(x^2-3x+\frac{9}{4}\right)-\frac{17}{4}=\left(x-\frac{3}{2}\right)^2-\sqrt{\frac{17}{2}}^2\)
\(=\left(x-\frac{3}{2}-\sqrt{\frac{17}{2}}\right)\left(x-\frac{3}{2}+\sqrt{\frac{17}{2}}\right)\)
b
\(x^4+x^2-2=x^4-x^3+x^3-x^2+2x^2-2=x^3\left(x-1\right)+x^2\left(x-1\right)+2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3+x^2+2x+2\right)\)
c
\(x^3-19x-30=x^3+2x^2-2x^2-4x-15x-30\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^4+2x^2-24\)
Đặt \(t=x^2\) ta có:
\(t^2+2t-24=t^2-4t+6t-24\)
\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)
x3 - 19x - 30
= x3 - 5x2 + 5x2 - 25x + 6x - 30
= x2( x - 5 ) + 5x( x - 5 ) + 6( x - 5 )
= ( x - 5 )( x2 + 5x + 6 )
= ( x - 5 )( x2 + 2x + 3x + 6 )
= ( x - 5 )[ x( x + 2 ) + 3( x + 2 ) ]
= ( x - 5 )( x + 2 )( x + 3 )
x8 + x7 + 1
= x8 + x7 + x6 - x6 + 1
= ( x8 + x7 + x6 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
x^3-19x-30
=(x^3+2x^2)-(2x^2+4x)-(15x+30)
=x^2(x+2)-2x(x+2)-15(x+2)
=(x+2)(x^2-2x-15)
=(x+2)(x^2-2x-15)
=(x+2)[(x^2+3x)-(5x+15)]
=(x+2)(x+3)(x-5)
x^8+x^7+1
=(x^8-x^2)+(x^7-x)+(x^2+x+1)
=x^2(x^6-1)+x(x^6-1)+(x^2+x+1)
=x(x+1)(x^6-1)+(x^2+x+1)
=x(x+1)(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x(x+1)(x^3+1)(x-1)+1)
=(x^2+x+1)(x^6-x^4+x^3-x+1)