loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

7a/

$x^3y+x-y-1=(x^3y-y)+(x-1)=y(x^3-1)+(x-1)$

$=y(x-1)(x^2+x+1)+(x-1)=(x-1)[y(x^2+x+1)+1]$

$=(x-1)(x^2y+xy+y+1)$

7b/

$x^2(x-2)+4(2-x)=x^2(x-2)-4(x-2)=(x-2)(x^2-4)$

$=(x-2)(x-2)(x+2)=(x-2)^2(x+2)$
7c/

$x^3-x^2-20x=x(x^2-x-20)=x[(x^2+4x)-(5x+20)]$

$x[x(x+4)-5(x+4)]=x(x+4)(x-5)$

 

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

7d/

$(x^2+1)^2-(x+1)^2=[(x^2+1)-(x+1)][(x^2+1)+(x+1)]$

$=(x^2-x)(x^2+x+2)$

$=x(x-1)(x^2+x+2)$

7e/

$6x^2-7x+2=(6x^2-3x)-(4x-2)=3x(2x-1)-2(2x-1)=(2x-1)(3x-2)$

7f/

$x^4+8x^2+12=(x^4+6x^2)+(2x^2+12)=x^2(x^2+6)+2(x^2+6)$

$=(x^2+6)(x^2+2)$

7g/

$(x^3+x+1)(x^3+x)-2=(t+1)t-2$ (đặt $x^3+x=t$)

$=t^2+t-2=(t^2+2t)-(t+2)=t(t+2)-(t+2)$

$=(t+2)(t-1)=(x^3+x+2)(x^3+x-1)$

$=[(x^3+x^2)-(x^2+x)+(2x+2)](x^3+x-1)$

$=[x^2(x+1)-x(x+1)+2(x+1)](x^3+x-1)$

$=(x+1)(x^2-x+2)(x^3+x-1)$

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)