\(x^{10}+x^5+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

khó thế

22 tháng 10 2017

Lê văn hải có oline thì tham khảo nha .

x^10 + x^5 + 1 
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) 
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) 
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1

24 tháng 9 2016

\(x^5+x+1=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
                     \(=\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)-\left(x^4+x^3+x^2\right)\)
                     \(=x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)\)
                     \(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
                

3 tháng 6 2019

\(x^{10}+x^5+1\)

\(=\left(x^{10}-x^9+x^7-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^9-x^8+x^6-x^5+x^4-x^2+x\right)\)

\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

\(=x^2\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

\(+x\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

20 tháng 10 2016

\(=x^5-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

20 tháng 10 2016

BIẾT CHẾT LIỀN

 

3 tháng 6 2018

a.

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b.

\(x^{10}+x^5+1=\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left[\left(x^3\right)^3-1\right]+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)+1\right]\)

24 tháng 9 2016

\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

câu b thì tương tự câu này

\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

câu cuối cũng giống câu này 

\(x^8+x^4+1\)

\(\text{Phân tích đa thức thành nhân tử :}\)

\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

Lát làm tiếp

7 tháng 3 2020

Câu 1:

Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)

để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)

thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)

\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)

\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)

mà \(x^2+2\ge2,\forall x\inℤ\)

\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)

mà \(x^2\)là số chính phương \(\forall x\inℤ\)

\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)

**bạn nhớ thử lại nhé
\(KL...\)

7 tháng 3 2020

Bạn Minh Tâm ơi giá trị \(\pm1\)sai rồi

26 tháng 7 2018

b/ (x + 1)(x + 5)

c/ (x - 5)(x - 2)

26 tháng 7 2018

\(b,x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)

\(c,x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)

1 tháng 8 2018

\(x^5+x-1\)

\(=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-x\right)\)

\(=x^2\left(x^3+x^2-1\right)-x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)