\(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
29 tháng 7 2018

\(\left(4a^2-3a-18\right)^2-\left(4a+3a\right)^2\)

\(=\left(4a^2-3a-18-4a^2-3a\right)\left(4a^2-3a-18+4a^2+3a\right)\)

\(=\left(-6a-18\right)\left(8a^2-18\right)\)

14 tháng 10 2020

a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)

\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)

b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)

\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)

\(=\left(-6a-18\right).\left(8a^2-18\right)\)

\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)

\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)

14 tháng 10 2020

a) Xem lại đề

b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2

= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 )​ + ( 4a2 + 3a ) ]

= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )

= ( -6a - 18 )( 8a2 - 18 )

= -6( a + 3 ).2( 4a2 - 9 )

= -12( a + 3 )( 4a2 - 9 )

= -12( a + 3 )( 2a - 3 )( 2a + 3 )

17 tháng 10 2018

\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4.\)

\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4.\)

\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4.\)

\(=\left(x+5ax+4a^2+a^2\right)^2.\)

\(=\left(x+5ax+5a^2\right)^2.\)

18 tháng 10 2018

\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)

\(=\)\(\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\)

\(=\)\(\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\)\(\left[\left(x^2+5ax+5a^2\right)-a^2\right].\left[\left(x^2+5ax+5a^2\right)-a^2\right]+a^4\)

\(=\)\(\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)

\(=\)\(\left(x^2+5ax+5a^2\right)^2\)

Chúc bạn học tốt ~ 

12 tháng 9 2017

(x + a)(x + 2a)(x + 3a)(x + 4a) + a4

= (x + a)(x + 4a)(x + 2a)(x + 3a) + a4

= (x2 + 4ax + ax + 4a2)(x2 + 3ax + 2ax + 6a2) + a4

= (x2 + 5ax + 4a2)(x2 + 5ax + 6a2) + a4

Đặt x2 + 5ax + 4a2 = t

= t(t + 2a2) + a4

= (t + a2)2

= (x2 + 5ax + 4a2 + a2)2

= (x2 + 5ax + 5a2)2

8 tháng 7 2018

đơn giản

6 tháng 8 2018

\(4a^2b^2-\left(a^2+b^2-1\right)^2\)

\(=\left[2ab-\left(a^2+b^2-1\right)\right].\left[2ab+\left(a^2+b^2-1\right)\right]\)

\(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2+-1\right)\)

\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)

\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b+1\right)\left(a+b-1\right)\)

19 tháng 7 2019

\(4a^2b^2-\left(a^2+b^2-1\right)^2=\left(2ab+a^2+b^2-1\right)\left(2ab-a^2-b^2+1\right)\)

\(=\left[\left(a+b\right)^2-1\right]\left[1-\left(a-b\right)^2\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(1+a-b\right)\left(1-a+b\right)\)

24 tháng 9 2020

a) x(y - x)3 + y(x - y)2 + xy(x - y)

= x(y - x).(y - x)2 +  y(x - y)2 + xy(x - y)

= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)

= (x - y)[x(y - x)(x - y) + y(x - y) + xy]

= (x - y)[x(y - x)(x - y) + y(x - y) + xy]

b) 3a2x - 3a2y + abx - aby

= 3a2(x - y) + ab(x - y)

= a(x - y)(3a + b)

24 tháng 9 2020

a) x( y - x )- y( x - y )2 + xy( x - y )

= -x( x - y )3 - y( x - y )2 + xy( x - y )

= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]

= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]

= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )

= ( x - y )( -x3 + 2x2y - xy2 + y2 )

b) 3a2x - 3a2y + abx - aby

= 3a2( x - y ) + ab( x - y )

= ( x - y )( 3a2 + ab )

= ( x - y )a( 3a + b )

8 tháng 7 2018

=\(\left(x+a-3\right)\left(x^2-2ax-2x+4a-12\right)\)

13 tháng 7 2016

4a2b2-(a2+b2-c2)2

= (4ab-a2-b2+c2)(4ab+a2+b2-c2)

= -[(a-b)2-c2][(a+b)2-c2]

=-(a-b+c)(a-b-c)(a+b-c)(a+b+c)

=(b-a-c)(b+c-a)(a+b-c)(a+b+c)

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

24 tháng 9 2020

a) 4a2b3 - 6a3b2 = 2a2b2( 2b - 3a )

b) ( a - b )2 - ( b - a ) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )

c) ( 8a3 - 27b3 ) - 2a( 4a2 - 9b2 ) = 8a3 - 27b3 - 8a3 + 18ab2 = 18ab2 - 27b3 = 9b2( 2a - 3b )

d) 10x2 + 10xy + 5x + 5y = 10x( x + y ) + 5( x + y ) = ( x + y )( 10x + 5 ) = 5( x + y )( 2x + 1 )

e) 5ay - 3bx + ax - 15by = 5y( a - 3b ) + x( a - 3b ) = ( a - 3b )( 5y + x )

24 tháng 9 2020

a) \(4a^2.b^3-6a^3.b^2=2a^2.b^2\left(2b-3a\right)\)

b) \(\left(a-b\right)^2-\left(b-a\right)=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right).\left(a-b+1\right)\)

c) \(8a^3-27b^3-2a.\left(4a^2-9b^2\right)=8a^3-27b^3-8a^3+18ab^2\)

\(=-27b^3+18ab^2=18ab^2-27b^3=9b^2.\left(2a-3b\right)\)

d) \(10x^2+10xy+5x+5y=5.\left(2x^2+2xy+x+y\right)\)

\(=5.\left[\left(2x^2+2xy\right)+\left(x+y\right)\right]=5.\left[2x\left(x+y\right)+\left(x+y\right)\right]\)

\(=5\left(x+y\right)\left(2y+1\right)\)

e) \(5ay-3bx+ax-15by=\left(5ay-15by\right)-\left(3bx-ax\right)\)

\(=5y\left(a-3b\right)-x\left(3b-a\right)=5y\left(a-3b\right)+x\left(a-3b\right)\)

\(=\left(a-3b\right)\left(x+5y\right)\)

13 tháng 9 2017

Ta có:

(x+a)(x+2a)(x+3a)(x+4a) + a4

=(x+a)(x+4a)(x+3a)(x+2a) +a4

=(x2+5ax+4a2)(x2+5ax+6a2) + a4

Đặt x2+5ax+5a2=y

=>(x2+5ax+4a2)(x2+5ax+6a2) + a4=(y-a2)(y+a2)+a4

=y2-a4+a4

=y2

=(x2+5ax+5a2)2

k mik nha