K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Phân tích các đa thức sau thành nhân tử :
a, a6 - a4 + 2a3 + 2a2

= a4(a2 - 1) + 2a2(a + 1)

= a4(a - 1)(a + 1) + 2a2(a + 1)

= (a + 1)(a5 - a4 + 2a2)

= a2(a + 1)(a3 - a2 + 2)

b, 7x3 - a3b3 (Sai đề thì phải!?)
c, 4 ( x2 - y2 ) - 8 ( x - ay ) - 4 ( a2 - 1)

= 4(x2 - y2 - 2x + 2ay - a2 + 1)
d, ( 3x2 + 3x + 2 )2 - ( 3x2 + 3x - 2 )2

= (3x2 + 3x + 2 - 3x2 - 3x + 2 )(3x2 + 3x + 2 + 3x2 + 3x - 2)

= 4(6x2 + 6x)

= 24x(x + 1)

30 tháng 7 2020

a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

b) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=3y^2\left(x^4+x^3+x+1\right)\)

d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)

\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)

\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

P/s: Ko chắc!

NV
31 tháng 7 2020

c/

\(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)

\(=3y^2\left(x^3+1\right)\left(x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

d/

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)

\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)

\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)

 

17 tháng 8 2020

9) \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)

\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)

\(=b^2\left(3a^2+b^2\right)\)

10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)

\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)

\(=\left(3x-3\right)\left(9x+1\right)\)

11) \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)

\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)

\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)

13) \(x^6-x^4+2x^3+2x^2\)

\(=x^6-x^4+2x^3+2x^2-1+1\)

\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)

\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)

\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)

\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

17 tháng 8 2020

1) \(\left(x+y\right)^2-25\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

2) \(100-\left(3x-y\right)^2\)

\(=10^2-\left(3x-y\right)^2\)

\(=\left(10-3x+y\right)\left(10+3x-y\right)\)

3) \(64x^2-\left(8a+b\right)^2\)

\(=\left(8x\right)^2-\left(8a+b\right)^2\)

\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)

4) \(4a^2b^4-c^4d^2\)

\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)

\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)

5) Đề đúng ko vậy ạ?

6) \(16x^3+54y^3\)

\(=2\left(8x^3+27y^3\right)\)

\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)

\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)

\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

7) \(8x^3-y^3\)

\(=\left(2x\right)^3-y^3\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)

\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)

\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)

3 tháng 6 2017

a,( x4-x3)-(x2-1)

=x3(x-1)-(x-1)(x+1)

=(x3-x-1)(x-1)

t

t

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4 
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))

6 tháng 8 2018

\(b,5x\left(x-1\right)-3x\left(1-x\right)=\left(5x+3x\right)\left(x-1\right)\)

\(c,-16a^4.b^6-24a^5.b^5-9a^6.b^4\)

\(=-a^4.b^4[\left(4b\right)^2+2.4.a.3.b+\left(3a\right)^2]\)

\(=-a^4.b^4\left(4b+3a\right)^2\)

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)

3 tháng 7 2016

a) =x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 7 2016

\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)

b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)

c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)

d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\) 

t i c k cho mình nha

15 tháng 9 2016

a,2x2-7x+6=(2x2-4x)-(3x-6)
=2x(x-3)-3(x-2)=(x-2)(2x-3)
b,x2+x-6=(x2+3x)-(2x+6)
=x(x-3)-2(x-3)=(x-3)(x-2)
c,x3+3x2+6x+4=x3+x2+2x2+2x+4x+4
=(x+1)(x2+2x+4)
d,x10+x5+1=(x10-x)+(x5-x2)+(x2+x+1)
=x((x3)3-1)+x2(x3-1)+(x2+x+1)
=x(x3-1)(x6+x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=x(x-1)(x2+x+1)+x2(x-1)(x2+x+1)+(x2+x+1)
(x2+x+1)(x2-x+x3-x2+1)
e,(12x2-12xy+3y2)-10x(2x-y)=3(4x2-4xy+y2)-10x(2x-y)
=3(2x-y)2-10x(2x-y)=(2x-y)(6x-3y-10x)=(2x-y)(-4x-3y)

15 tháng 9 2016

phân tích đa thức thành nhân tử

a,2x^2-7x+6
b,x^2+x-6
c,x^3+3x^2+6x+4
d,x^10+x^5+1
e,(12x^2-12xy+3y^2)-10x(2x-y)