Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
b) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left[\left(x^2+2xy+y^2\right)+x^2-y^2+\left(x^2-2xy+y^2\right)\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
c) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=3y^2\left(x^4+x^3+x+1\right)\)
d) \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(=4\left[\left(x^2-y^2\right)-2\left(x-ay\right)-\left(a^2-1\right)\right]\)
\(=4\left[\left(x^2-y^2\right)-\left(2x-2ay\right)-\left(a^2-1\right)\right]\)
\(=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)
P/s: Ko chắc!
c/
\(=3y^2\left(x^4+x^3+x+1\right)\)
\(=3y^2\left[x^3\left(x+1\right)+x+1\right]\)
\(=3y^2\left(x^3+1\right)\left(x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
d/
\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)
\(=4\left(x-1\right)^2-4\left(y-a\right)^2\)
\(=4\left[\left(x-1\right)^2-\left(y-a\right)^2\right]\)
\(=4\left(x-1-y+a\right)\left(x-1+y-a\right)\)
9) \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)
\(=b^2\left(3a^2+b^2\right)\)
10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)
\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)
\(=\left(3x-3\right)\left(9x+1\right)\)
11) \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)
\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)
13) \(x^6-x^4+2x^3+2x^2\)
\(=x^6-x^4+2x^3+2x^2-1+1\)
\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)
\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)
\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
1) \(\left(x+y\right)^2-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
2) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
3) \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
4) \(4a^2b^4-c^4d^2\)
\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)
\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)
5) Đề đúng ko vậy ạ?
6) \(16x^3+54y^3\)
\(=2\left(8x^3+27y^3\right)\)
\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)
\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)
\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
7) \(8x^3-y^3\)
\(=\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)
\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)
\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))
a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)
\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)
\(=5\cdot\left(1-2xy^2\right)\)
\(=5-10xy^2\)
b) Ta có: \(9x^2-\left(3x-4\right)^2\)
\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)
\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)
\(=4\cdot\left(6x-4\right)\)
\(=24x-16\)
c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)
\(=a^2-b^4\)
d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left(a^2+2a\right)^2-9\)
\(=a^4+4a^3+4a^2-9\)
e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)
\(=x^2-y^2+12y-36\)
f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)
g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(=\left(2y\right)^3-5^3\)
\(=8y^3-125\)
h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)
\(=\left(3y\right)^3+4^3\)
\(=27y^3+64\)
i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=\left(x-3\right)^3-\left(x-2\right)^3\)
\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)
\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)
\(=-3x^2+15x-19\)
j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\cdot\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)
c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)
d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
t i c k cho mình nha
a,2x2-7x+6=(2x2-4x)-(3x-6)
=2x(x-3)-3(x-2)=(x-2)(2x-3)
b,x2+x-6=(x2+3x)-(2x+6)
=x(x-3)-2(x-3)=(x-3)(x-2)
c,x3+3x2+6x+4=x3+x2+2x2+2x+4x+4
=(x+1)(x2+2x+4)
d,x10+x5+1=(x10-x)+(x5-x2)+(x2+x+1)
=x((x3)3-1)+x2(x3-1)+(x2+x+1)
=x(x3-1)(x6+x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=x(x-1)(x2+x+1)+x2(x-1)(x2+x+1)+(x2+x+1)
(x2+x+1)(x2-x+x3-x2+1)
e,(12x2-12xy+3y2)-10x(2x-y)=3(4x2-4xy+y2)-10x(2x-y)
=3(2x-y)2-10x(2x-y)=(2x-y)(6x-3y-10x)=(2x-y)(-4x-3y)
phân tích đa thức thành nhân tử
a,2x^2-7x+6
b,x^2+x-6
c,x^3+3x^2+6x+4
d,x^10+x^5+1
e,(12x^2-12xy+3y^2)-10x(2x-y)
Phân tích các đa thức sau thành nhân tử :
a, a6 - a4 + 2a3 + 2a2
= a4(a2 - 1) + 2a2(a + 1)
= a4(a - 1)(a + 1) + 2a2(a + 1)
= (a + 1)(a5 - a4 + 2a2)
= a2(a + 1)(a3 - a2 + 2)
b, 7x3 - a3b3 (Sai đề thì phải!?)
c, 4 ( x2 - y2 ) - 8 ( x - ay ) - 4 ( a2 - 1)
= 4(x2 - y2 - 2x + 2ay - a2 + 1)
d, ( 3x2 + 3x + 2 )2 - ( 3x2 + 3x - 2 )2
= (3x2 + 3x + 2 - 3x2 - 3x + 2 )(3x2 + 3x + 2 + 3x2 + 3x - 2)
= 4(6x2 + 6x)
= 24x(x + 1)