\(\Delta\)ABC ,M (4;-1)\(\in\) AB , N(0;-5) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Gọi N' là điểm đối xứng của N wa đg thẳng AD(D là chân đg phân giác),gọi giao điểm N'N và AD là I

\(\Rightarrow\)N'N:3x-y+5

Tọa độ điểm I là nghiệm của hệ \(\begin{cases}x-3y-5=0\\3x+y+5=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)\(\Rightarrow\)N'(-2,1)

Tương tự:M'(\(\frac{-48}{5},\frac{-21}{5}\)

Ta có:MN':x+3y-1=0

M'N:y=-5

tọa độ điểm A là nghiệm của hệ \(\begin{cases}x+3y-1=0\\y=-5\end{cases}\)   

\(\Rightarrow\)A(16,-5)

Do G là trọng tâm nên \(\overrightarrow{AG}=2\overrightarrow{GE}\) (E(x,y) là trung điểm của BC)

\(\Rightarrow\begin{cases}\frac{-50}{3}=2x+\frac{4}{3}\\\frac{10}{3}=2y+3\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=0\end{cases}\)

B thuộc MN'\(\Rightarrow\) B\(\left(1-3b,b\right)\)

E là trung điểm BC \(\Rightarrow\) C(3b-19,-b)

Do C thuộc M'N\(\Rightarrow\) b=5

Suy ra B,C

trong wá trình làm có sai sót gì thì thông cảm

NV
25 tháng 4 2020

Câu 1:

Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)

Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt

Phương trình AB có dạng: \(x+y+c=0\)

Theo công thức diện tích tam giác:

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)

\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)

TH1: \(x+y-1=0\Rightarrow y=1-x\)

Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)

Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM

TH2: tương tự.

Bạn tự làm nốt phần còn lại nhé

25 tháng 4 2020

Đây là đề bài 1 chính thức nha bạn!

Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.

18 tháng 4 2016

B A K C H(-1;1) 4x+3y-13=0 x-y+1=0

Gọi K là điểm đối xứng với H qua đường phân giác trong góc A. Khi đó K thuộc đường thẳng AC. Đường thẳng HK có phương trình \(x+y+2=0\)

Gọi I là giao điểm của HK và đường phân giác trong góc A thì I có tọa độ là nghiệm của hệ :

\(\begin{cases}x-y+2=0\\x+y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=0\end{cases}\)\(\Rightarrow I\left(-2;0\right)\)

I là trung điểm HK nên suy ta \(K\left(-3;1\right)\)

Khi đó AC :\(3\left(x+3\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y+1=0\)

A có tọa độ thỏa mãn : \(\begin{cases}x-y+2=0\\3x-4y+13=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=7\end{cases}\)\(\Leftrightarrow A\left(5;7\right)\)

AB có phương trình : \(\frac{x+1}{6}=\frac{y+1}{8}\Leftrightarrow4x-3y+1=0\)

B có tọa độ thỏa mãn : \(\begin{cases}4x+3y-1=0\\4x-3y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=\frac{1}{3}\end{cases}\)\(\Rightarrow B\left(0;\frac{1}{3}\right)\)

HC có phương trình : \(3\left(x+1\right)+4\left(y+1\right)=0\Leftrightarrow30+4y+7=0\)

C có tọa độ thỏa mãn hệ phương trình :

 \(\begin{cases}3x+4y+7=0\\3x-4y+13=0\end{cases}\)\(\begin{cases}x=-\frac{10}{3}\\y=\frac{3}{4}\end{cases}\)\(\Rightarrow C\left(-\frac{10}{3};\frac{3}{4}\right)\)

7 tháng 4 2019

cho mk hs: tai sao K thuoc duong thang AC thi HK co phuong trinh nhu vay ak

11 tháng 4 2016

Vì B thuộc đường thẳng (AB) nên \(B\left(a;1-2a\right)\)

Tương tự \(C\left(-2-4b;3b\right)\)

Ta có : \(\overrightarrow{MB}=\left(a-1;4-2a\right);\overrightarrow{MC}=\left(-3-4b;3b+3\right)\)

Ta có \(\left(AB\right)\cap\left(AC\right)=\left\{A\right\}\Rightarrow A\left(2;-3\right)\)

Vì B, M, C thẳng hàng, \(3MB=2MC\) nên ta có : \(3\overrightarrow{MB}=2\overrightarrow{MC}\) hoặc \(3\overrightarrow{MB}=-2\overrightarrow{MC}\)

- Trường hợp 1 : \(3\overrightarrow{MB}=2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=2\left(-3-4b\right)\\3\left(4-2a\right)=2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{11}{5}\\b=\frac{-6}{5}\end{cases}\)

                                                \(\Rightarrow B\left(\frac{11}{5};-\frac{17}{5}\right);C\left(\frac{11}{5};-\frac{18}{5}\right)\Rightarrow G\left(\frac{7}{3};\frac{10}{3}\right)\)

- Trường hợp 2 : \(3\overrightarrow{MB}=-2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=-2\left(-3-4b\right)\\3\left(4-2a\right)=-2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=3\\b=0\end{cases}\)

                                                \(\Rightarrow B\left(3;-5\right);C\left(-2;0\right)\Rightarrow G\left(1;\frac{-8}{3}\right)\)

Vậy có 2 điểm \(G\left(1;\frac{-8}{3}\right)\) và \(G\left(\frac{7}{3};\frac{10}{3}\right)\) thỏa mãn đề bài

 

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0
20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

6 tháng 10 2016

Có: \(3\overrightarrow{MA}+4\overrightarrow{MB}=0\Leftrightarrow3\overrightarrow{MA}+4\overrightarrow{MB}+3\overrightarrow{MC}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MC}+\overrightarrow{CB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{CM}-2\overrightarrow{CN}=0\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{NM}=0\)
Vậy 3 điểm M, N, G thẳng hàng.
b, theo như mình biết thì không có thương hai vec tơ.
                                    

14 tháng 12 2018

bài 2)

xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)

\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )

\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )

=> đpcm

Câu 4:

\(\overrightarrow{AB}=\left(-6;-2\right)\)

\(\overrightarrow{AH}=\left(m+1;m+1\right)\)

Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)

=>1/-6=1/-2(loại)