K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 12 2021

\(n^2+3n+1=n^2+n+2n+2-1=\left(n+2\right)\left(n+1\right)-1⋮\left(n+1\right)\)

\(\Leftrightarrow1⋮\left(n+1\right)\Leftrightarrow n+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow n\in\left\{-2,0\right\}\).

17 tháng 1 2019

n2 + n + 17 ⋮ n + 1

n( n + 1 ) + 17 ⋮ n + 1

Vì n( n + 1 ) ⋮ n + 1

=> 17 ⋮ n + 1

=> n + 1 thuộc Ư(17) = { 1; 17; -1; -17 }

Tự làm

b) n2 + 25 ⋮ n + 2

n2 + 2n - 2n + 25 ⋮ n + 2

n( n + 2 ) - ( 2n - 25 ) ⋮ n + 2

Vì n( n + 2 ) ⋮ n + 2

=> 2n - 25 ⋮ n + 2

2n + 4 - 29 ⋮ n + 2

2( n + 2 ) - 29 ⋮ n + 2

Vì 2( n + 2 ) ⋮ n + 2

=> 29 ⋮ n + 2 

=> n + 2 thuộc Ư(29) = { 1; 29; -1; -29 }

Tự làm

c) 3n2 + 5 ⋮ 3n + 1

3n2 + n - n + 5 ⋮ 3n + 1

n( 3n + 1 ) - ( n - 5 ) ⋮ 3n + 1

Vì n( 3n + 1 ) ⋮ 3n + 1

=> n - 5 ⋮ 3n + 1

<=> 3( n - 5 ) ⋮ 3n + 1

<=> 3n - 15 ⋮ 3n + 1

<=> 3n + 1 - 16 ⋮ 3n + 1

Vì 3n + 1 ⋮ 3n + 1

=> 16 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(16) = { 1; 2; 4; 8; 16; -1; -2; -4; -8; -16 }

=> tự làm nốt xong nhớ thay x vào xem có thỏa mãn ko

17 tháng 1 2019

tim n biet 

n^2 chia het cho n-1

1 tháng 11 2018

a) ta có: 1 -3n chia hết cho 2n +1

=> 2 - 6n chia hết cho 2n +1

=> 5 - 3 - 6n chia hết cho 2n +1

5 - 3.(1+2n) chia hết cho 2n + 1

...

bn tự làm tiếp đk r

b) ta có: 2-7n chia hết cho 2n + 5

=> 4 - 14n chia hết cho 2n + 5

=> 39 - 35 - 14n chia hết cho 2n + 5

39 - 7.(5+2n) chia hết cho 2n +5

...

c) ta có: 4n + 9 chia hết cho 3n + 1

=> 12n + 27 chia hết cho 3n + 1

12n + 4+23 chia hét cho 3n + 1

4.(3n+1) + 23 chia hết cho 3n + 1

...

1 tháng 11 2018

d) ta có: n^2 + 2n + 7 chia hết cho n+2

=> n.(n+2) + 7 chia hết cho n + 2

....

e) ta có: n^2 + n + 1 chia hết cho n + 1

=> n.(n+1) + 1 chia hết cho n + 1

...

12 tháng 6 2018

n+8 chia hết cho n+2

=> (n+2) - 10 chia hết cho n+2

=> n+2 chia hết cho n+2

=> 10 chia hết cho n+2

=> n+2 thuộc Ư(10) = { 1,2,5,10,-1,-2,-5,-10}

Ta xét

Với n+2 = 1 thì n=-1

Với n+2 = 2 thì n=0

Với n+1 = 5 thì n=4

Với n+2 = 10 thì n=8

Với n+2 = -1 thì n=-3

Với n+2 = -2 thì n=-4

Với n+2 = -5 thì n=-7

Với n+2 = -10 thì n=-12

12 tháng 6 2018

a) ta có: n+5 chia hết cho n

mà n chia hết cho n

=> 5 chia hết cho n

=> n thuộc Ư(5)= (5;-5;1;-1)

KL: n = ( 5;-5;1;-1)

b) ta có: n+8 chia hết cho n+2

=> n + 2 + 6 chia hết cho n+2

mà n+2 chia hết cho n+2

=> 6 chia hết cho n+2

=> n+2 thuộc Ư(6)=(6;-6;3;-3;2;-2;1;-1)

nếu n+2 = 6 => n = 4

n+2 = - 6 => n = - 8

n+ 2 = 3 => n = 1

n+2 = - 3 => n = - 5

n + 2 = 2=> n = 0

n+ 2= -2 => n= - 4

n+2 = 1 => n = -1

n + 2 = -1 => n = - 3

KL: n = ( 4;-8;1;-5, 0;-4;-1;-3)

các phần còn lại, bn lm tương tự nha!
 

17 tháng 5 2017

chỉ có 

n=2

trường hợp e sai 

18 tháng 5 2017

a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)

Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )

* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )

* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )

* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )

Vậy với n \(\in\)  { 0; 2; 6 } thì n + 4 \(⋮\)n - 1

Các bài còn lại bn làm tương tự như vậy

11 tháng 11 2015

n+2 chia hết cho n+1

=>n+1+1 chia hết chi n+1

=>1 chia hết cho n+1

=>n+1=1

=>n=0

b.

2n+7 chia hết cho n+1

=>2(n+1)+5 chia hết cho n+1

=>n+1 thuộc Ư(5)

=>n +1 thuộc {1;5}

=>n thuộc {0;4}

c.2n+1 chia hết cho n-6

=>2(n-6)+13 chia hết cho n-6

=> n-6 thuộc Ư(13)

=>n-6 thuộc {1;13}

=> n thuộc {7;19}

 

22 tháng 1 2016

c) n2 + 2n + 7 chia hết cho n + 2

=> n(n + 2) + 7 chia hết cho n + 2

Mà n(n + 2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=> n + 2 \(\in\){-1;1;-7;7}

=> n \(\in\){-3;-1;-9;5}

22 tháng 1 2016

a) n + 6 chia hết cho n

Mà n chia hết cho n

=> 6 chia hết cho n

=> n \(\in\){-1;1;-2;2;-3;3;-6;6}

Mà n thuộc N

=. n \(\in\){1;2;3;6}

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

10 tháng 1 2016

a)(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.

b)ta có: 3n +24 chia het cho n-4
=> 3n+24-3n+12 chia hết cho n-4
=> 36 chia hết cho n-4
=> n-4 thuộc Ư(36)={1;2;3;4;6;9;12;36} và các giá trị âm tương ứng
Mà n-4>=-4
=> n-4=-4;-3;-2;-1;1;2;3;4;6;9;12;36
=> n=0;1;2;3;5;6;7;8;10;13;16;40

tick nha

10 tháng 1 2016

a)(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.

b)ta có: 3n +24 chia het cho n-4
=> 3n+24-3n+12 chia hết cho n-4
=> 36 chia hết cho n-4
=> n-4 thuộc Ư(36)={1;2;3;4;6;9;12;36} và các giá trị âm tương ứng
Mà n-4>=-4
=> n-4=-4;-3;-2;-1;1;2;3;4;6;9;12;36
=> n=0;1;2;3;5;6;7;8;10;13;16;40

còn ý c cứ từ từ suy nghĩ

tick nha