Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)
b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)
c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)
a) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
c) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
Bài 1 câu g bạn kia làm sai mình sửa lại nhá
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
\(=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Để mình làm tiếp cho :))
Bài 2 :
Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)
\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10\)
\(=10.30=300\)
Câu b : \(35^2+40^2-25^2+80.35\)
\(=\left(35^2+80.35+40^2\right)-25^2\)
\(=\left(30+45\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100.50=5000\)
Bài 3 :
Câu a : \(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)
Câu b : \(2x-2y-x^2+2xy-y^2=0\)
\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)
Câu c :
\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^2\left(x-3\right)+27-9x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)
Bài 4 :
Câu a :
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
Câu b :
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Câu c :
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Câu d :
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a,\(-4x^2+4x-1\)
\(\Leftrightarrow\left(-2x-1\right)^2\)
b,\(\left(2x+1\right)^2-4\left(x-1\right)^2\)
\(\Rightarrow\left[2x+1-2\left(x-1\right)\right].\left[2x+1+2\left(x-1\right)\right]\)
\(\Rightarrow\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)
\(\Rightarrow3\left(4x-1\right)\)
c,\(\left(2x-y\right)^2-4x^2+12x-9\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(4x^2-12x+9\right)\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(2x-3\right)^2\)
\(\Leftrightarrow\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)
\(\Rightarrow\left(y+3\right)\left(4x+y-3\right)\)
d,\(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+2^2y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+4\left(y^2\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)-2y^2+\left(2y^2\right)^2\)
\(\Leftrightarrow\left(x+1-2y^2\right)^2\)
P= 125x^3-8y^3
=5^3x^3-2^3y^3
=(5x)^3-(2y)^3
=(5x-2y)(25x^2+10xy+4y^2)
P=4x(x-2y)+8y(2y-x)
=4x(x-2y)-8y(x-2y)
=(4x-8y)(x-2y)
=4(x-2y)(x-2y)
=4(x-2y)^2
(2x+1)^2-(x-1)^2=(2x+1-x+1)(2x+1+x-1)
=(x+2)3x
K NHA!
+) \(\left(x+3\right)\left(x-4\right)=x^2-4x+3x-12=x^2-x-12\)
+) \(\left(x-4\right)\left(x^2+4x+16\right)=x^3+4x^2+16x-4x^2-16x-64=x^3-64\)
+) \(\left(xy^2-1\right)\left(x^2y+5\right)=\left(xy\right)^3+5xy^2-x^2y-5\)
+)\(4\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x^2+1\right)=4\left(x^2-\frac{1}{4}\right)\left(4x^2+1\right)\)
\(=\left(4x^2-1\right)\left(4x^2+1\right)=16x^4-1\)
\(\left(x+3\right)\left(x-4\right)\)
\(=x^2-4x+3x-12\)
\(x^2-x-12\)
\(\left(x-4\right)\left(x^2+4x+16\right)\)
\(=x^3+4x^2+16x-4x^2-16x-64\)
\(=x^3-64\)
\(\left(xy^2-1\right)\left(x^2y+5\right)\)
\(=x^3y^3+5xy^2-x^2y-5\)